

# **TEST REPORT**

## **CERTIFICATE OF CONFORMITY**

| Standard:      | EN 55032:2015 +A11:2020, Class A<br>EN 61000-3-2:2014 (Not Applicable)<br>EN IEC 61000-3-2:2019 +A1:2021 (Not Applicable)<br>EN 61000-3-3:2013 +A2:2021 (Not Applicable)<br>EN 55035:2017 +A11:2020 |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Report No.:    | CEBDBO-WTW-P22070677                                                                                                                                                                                |
| Model No.:     | PE-2004MX                                                                                                                                                                                           |
| Received Date: | 2022/7/22                                                                                                                                                                                           |
| Test Date:     | 2022/8/11 ~ 2022/8/27                                                                                                                                                                               |
| Issued Date:   | 2022/9/21                                                                                                                                                                                           |
| Applicant:     | Vecow Co., Ltd.                                                                                                                                                                                     |
| Address:       | 3F., No.10, Jiankang Rd., Zhonghe Dist., New Taipei City 23586, Taiwan                                                                                                                              |
| Issued By:     | Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch                                                                                                                               |
|                | Lin Kou Laboratories                                                                                                                                                                                |
| Lab Address:   | No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan                                                                                                                          |
| Test Location: | No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan                                                                                                                          |
|                |                                                                                                                                                                                                     |

Date: 2022/9/21 Approved by:

Jim Hsiang / Associate Technical Manager

This test report consists of 66 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.



Prepared by : Vivian Chen / Senior Specialist



## **Table of Contents**

| Relea                                                       | ase Control Record                                                                                                                                                                                                                                                                                                                | 4                                      |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1                                                           | Certificate                                                                                                                                                                                                                                                                                                                       | 5                                      |
| 2                                                           | Summary of Test Results                                                                                                                                                                                                                                                                                                           | 6                                      |
| 2.1<br>2.2<br>2.3                                           | Measurement Uncertainty                                                                                                                                                                                                                                                                                                           | 9                                      |
| 3                                                           | General Information                                                                                                                                                                                                                                                                                                               | 10                                     |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7               | <ul> <li>Primary Clock Frequencies of Internal Source</li> <li>Features of EUT</li> <li>Operating Modes of EUT and Determination of Worst Case Operating Mode</li> <li>Test Program Used and Operation Descriptions</li> <li>Connection Diagram of EUT and Peripheral Devices</li> </ul>                                          |                                        |
| 4                                                           | Test Instruments                                                                                                                                                                                                                                                                                                                  | 17                                     |
| 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9 | <ul> <li>Conducted Emissions from Wired Network Ports</li> <li>Radiated Emissions up to 1 GHz</li> <li>Radiated Emissions above 1 GHz</li> <li>Electrostatic Discharges (ESD)</li> <li>Radio Frequency Electromagnetic Field (RS)</li> <li>Fast Transients Common Mode (EFT)</li> <li>Radio Frequency Common Mode (CS)</li> </ul> |                                        |
| 5                                                           | Limits of Test Items                                                                                                                                                                                                                                                                                                              | 24                                     |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.5                             | Conducted Emissions from Wired Network Ports<br>Radiated Emissions up to 1 GHz<br>Radiated Emissions above 1 GHz                                                                                                                                                                                                                  | 24<br>24<br>25                         |
| 6                                                           | Test Arrangements                                                                                                                                                                                                                                                                                                                 |                                        |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6<br>6.7<br>6.8<br>6.9 | Radiated Emissions up to 1 GHz         Radiated Emissions above 1 GHz         Electrostatic Discharges (ESD)         Radio Frequency Electromagnetic Field (RS)         Fast Transients Common Mode (EFT)         Radio Frequency Common Mode (CS)                                                                                | 29<br>32<br>33<br>34<br>36<br>37<br>38 |
| 7                                                           | Test Results of Test Item                                                                                                                                                                                                                                                                                                         | 41                                     |
| 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>7.9 | <ul> <li>Conducted Emissions from Wired Network Ports</li> <li>Radiated Emissions up to 1 GHz</li> <li>Radiated Emissions above 1 GHz</li> <li>Electrostatic Discharges (ESD)</li> <li>Radio Frequency Electromagnetic Field (RS)</li> <li>Fast Transients Common Mode (EFT)</li> <li>Radio Frequency Common Mode (CS)</li> </ul> |                                        |
| 8                                                           | Pictures of Test Arrangements                                                                                                                                                                                                                                                                                                     |                                        |
| 8.1                                                         | Conducted Emissions from Power Ports                                                                                                                                                                                                                                                                                              |                                        |



| 8.2 | Conducted Emissions from Wired Network Ports |  |
|-----|----------------------------------------------|--|
| 8.3 | Radiated Emissions up to 1 GHz               |  |
| 8.4 | Radiated Emissions above 1 GHz.              |  |
| 8.5 | Electrostatic Discharges (ESD)               |  |
| 8.6 | Radio Frequency Electromagnetic Field (RS)   |  |
| 8.7 | Fast Transients Common Mode (EFT)            |  |
| 8.8 | Radio Frequency Common Mode (CS)             |  |
| 8.9 | Power Frequency Magnetic Field (PFMF)        |  |
| 9   | Information of the Testing Laboratories      |  |



### **Release Control Record**

| Issue No.            | Description       | Date Issued |
|----------------------|-------------------|-------------|
| CEBDBO-WTW-P22070677 | Original release. | 2022/9/21   |



### 1 Certificate

| Product:       | PCI Express PoE+ Expansion Card                                             |
|----------------|-----------------------------------------------------------------------------|
| Brand:         | Vecow                                                                       |
| Test Model:    | PE-2004MX                                                                   |
| Sample Status: | Engineering sample                                                          |
| Applicant:     | Vecow Co., Ltd.                                                             |
| Test Date:     | 2022/8/11 ~ 2022/8/27                                                       |
| Standard:      | EN 55032:2015 +A11:2020, Class A                                            |
|                | EN 61000-3-2:2014 (Not Applicable)                                          |
|                | EN IEC 61000-3-2:2019 +A1:2021 (Not Applicable)                             |
|                | EN 61000-3-3:2013 +A2:2021 (Not Applicable)                                 |
|                | EN 55035:2017 +A11:2020                                                     |
| Measurement    | EN 61000-4-2:2009 / IEC 61000-4-2:2008 ED. 2.0                              |
| procedure:     | EN 61000-4-3:2006 +A1:2008 +A2:2010 / IEC 61000-4-3:2010 ED. 3.2            |
|                | EN IEC 61000-4-3:2020 / IEC 61000-4-3:2020 ED. 4.0                          |
|                | EN 61000-4-4:2012 / IEC 61000-4-4:2012 ED. 3.0                              |
|                | EN 61000-4-5:2014 +A1:2017 / IEC 61000-4-5:2017 ED. 3.1 (Not Applicable)    |
|                | EN 61000-4-6:2014 +AC:2015 / IEC 61000-4-6:2013 ED. 4.0                     |
|                | EN 61000-4-8:2010 / IEC 61000-4-8:2009 ED. 2.0                              |
|                | EN 61000-4-11:2004 +A1: 2017 / IEC 61000-4-11:2017 ED. 2.1 (Not Applicable) |
|                | EN IEC 61000-4-11:2020 / IEC 61000-4-11:2020 ED. 3.0 (Not Applicable)       |

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.



## 2 Summary of Test Results

| The test items that the EUT need to perform in accordance with its interfaces and evaluated functions are as follows |
|----------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------|

| Standard      | Test Item                                       | Result | Remark                                                         |
|---------------|-------------------------------------------------|--------|----------------------------------------------------------------|
| EN 55032      | Conducted Emissions from Power Ports            | Pass   | Minimum passing Class A margin is<br>-24.37 dB at 12.57561 MHz |
| EN 55032      | Conducted Emissions from Wired<br>Network Ports | Pass   | Minimum passing Class A margin is<br>-15.02 dB at 12.57561 MHz |
| EN 55032      | Radiated Emissions up to 1 GHz                  | Pass   | Minimum passing Class A margin is<br>-6.14 dB at 324.06 MHz    |
| EN 55032      | Radiated Emissions above 1 GHz                  | Pass   | Minimum passing Class A margin is<br>-6.70 dB at 5400.08 MHz   |
| IEC 61000-4-2 | Electrostatic Discharges (ESD)                  | Pass   | For EN 55035<br>Performance Criteria B                         |
| IEC 61000-4-3 | Radio Frequency Electromagnetic Field (RS)      | Pass   | For EN 55035<br>Performance Criteria A                         |
| IEC 61000-4-4 | Fast Transients Common Mode (EFT)               | Pass   | For EN 55035<br>Performance Criteria A                         |
| IEC 61000-4-6 | Radio Frequency Common Mode (CS)                | Pass   | For EN 55035<br>Performance Criteria A                         |
| IEC 61000-4-8 | Power Frequency Magnetic Field (PFMF)           | Pass   | For EN 55035<br>Performance Criteria A                         |

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.



#### 2.1 Performance Criteria

#### **General Performance Criteria**

These criterions shall be used during the testing of primary functions where no specified in the normative annexes of EN 55035 is applicable.

#### Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

#### Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

#### Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

#### Product Specific Performance criteria for network functions

Equipment that provides these functions transmits and receives data through ports such as an analogue/digital data port. The networking functions are just like network switching and routing ; data transmission ; supervisory...etc.

The particular performance criteria which are specified in the normative annexes of CISPR 35/EN 55035 take precedence over the corresponding parts of the general performance criteria.

#### Performance criterion A

Where relevant, during the application of the test the network function shall, as a minimum, operate ensuring that:

- $\cdot\,$  established connections shall be maintained throughout the application of the test;
- $\cdot \,$  no change of operational state or corruption of stored data occurs;
- no increase in error rate above the figure defined by the manufacturer occurs. The manufacturer should select the most appropriate performance measurement criteria for the product or system, for example bit error rate, block error rate;
- $\cdot\,$  no request for retry above the figure defined by the manufacturer;
- the data transmission rate does not reduce below the figure defined by the manufacturer;
- · no protocol failure occurs;
- · other verifications are described in F.3.3.1 of CISPR 35/ EN 55035.



#### Performance criterion B

Established connections shall be maintained throughout the test, or shall self-recover in a way and timescale that is imperceptible to the user.

The error rate, request for retry and data transmission rates may be degraded during the application of the test. Degradation of the performance as described in criterion A is permitted, provided that the normal operation of the EUT is self-recoverable to the condition established prior to the application of the test.

Where required, as defined in Clause 5 of CISPR 35/ EN 55035, the acceptable operation of the function shall be verified at the completion of the test as described in Table H.1 of CISPR 35/ EN 55035, by confirming the following:

- the EUT's ability to establish a connection,
- the EUT's ability to clear a connection.

During surge testing disconnection is allowed on the analogue/digital data port being tested.

If the EUT is a supervisory equipment, it shall not impact the normal operation of the network being monitored. In addition, any supervisory functions impacted during the period of the test shall return to the state prior to the test. Elements to consider include: alarms, signalling lamps, printer output, network traffic rates, network monitoring.

#### Performance criterion C

Degradation of performance as described in criteria A and B is permitted provided that the normal operation of the EUT is self-recoverable to the condition immediately before the application of the test, or can be restored after the test by the operator.

#### Product Specific Performance Criteria for xDSL

The particular performance criteria which are specified in the normative annexes of CISPR 35/EN 55035 take precedence over the corresponding parts of the general performance criteria.

#### Performance criterion A

#### Applicable for the test requirement defined in table clause 2.1 of EN 55035

During the swept frequency test the established connection shall be maintained throughout the testing and the information transferred without any additional reproducible errors or loss of synchronisation. If a degradation in performance is observed and the system is adaptive, for example has the capability to automatically retrain in the presence of an interfering signal, then for conducted immunity tests only, the following procedure shall be followed:

- a) For each range of interfering frequencies in which degradation in performance is observed, three frequencies (beginning, middle and end) shall be identified.
- b) At each of the frequencies identified in step a), the interfering signal shall be turned on and the system is allowed to retrain.
- c) If the system is able to retrain and then functions correctly for a dwell time of at least 60 seconds without any additional reproducible errors or loss of synchronisation, then the performance level of the system is considered acceptable.
- d) The frequencies identified in step a) and the data rates achieved in step b) shall be recorded in the test report.

#### Applicable for the test requirement defined in table clause 2.2 of EN 55035

It is important that the modems are able to train in the presence of repetitive impulsive noise and minimize disruption to the end-user where a repetitive impulsive noise source starts after the link has synchronized. Therefore the following procedure and performance criteria shall apply.

The manufacturer shall select the class of impulsive noise protection (INP) to be used for the immunity test and should state this information in the technical documentation and in the test report. The maximum delay shall be set to 8 ms.

In the absence of impulsive noise: The modem shall operate without retraining at its target noise margin with a bit rate value depending on the line attenuation and the stationary noise being present on the line. (The actual value will be between the minimum and maximum bit rate values programmed in the port).

The impulsive noise source shall then be applied at the required test level.

With the impulsive noise applied: The modem shall operate without retraining and without SES at the bit rate established prior to the application of the impulsive noise. No extra CRC errors shall occur due to the impulsive noise. After the test, the noise margin value shall return to the target noise margin.



#### Performance criterion B

#### Applicable for the test requirement defined in table clause 2.3 of EN 55035

Modems shall withstand the occurrence of isolated impulsive noise events. The performance criteria defined in below Table shall be applied.

| Impulse duration<br>(ms) | Performance criteria                                                                                                            |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0.24                     | The application of the impulse shall not cause the xDSL link to lose synchronisation.<br>No CRC errors are permitted.           |
| 10                       | The application of the 5 impulses shall result in less than 75 CRC errors and shall not cause the link to lose synchronisation. |
| 300                      | The application of the impulse shall not cause the xDSL link to lose synchronisation.                                           |

#### Applicable for the test requirements defined in table clauses 2.5 and 4.5 of EN 55035

For application of this test to the xDSL port, a repetition rate of 100 kHz (burst length 0.75 ms) shall be used.

Degradation of the performance as described in criterion A is permitted in that errors are acceptable during the application of the test. However the application of the test shall not cause the system to lose the established connection or re-train. At the cessation of the test the system shall operate in the condition established prior to the application of the test without user intervention.

After the application of the EFT/B tests to the xDSL or AC mains port, the CRC error count shall not have increased by more than 600 when compared to the count prior to the application of the test.

#### Performance criterion C

Degradation of the performance as described in criteria A and B is permitted provided that the normal operation of the EUT is self-recoverable to the condition established prior to application of the test or can be restored after the test by the operator.

#### 2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                                     | Specification                   | Expanded Uncertainty<br>(k=2)<br>(±)                                                                                                      | Maximum allowable<br>uncertainty<br>(±)                                                                                                           |
|-------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted Emissions from Power Ports            | 9 kHz ~ 30 MHz                  | 3.00 dB                                                                                                                                   | 3.4 dB ( <i>U</i> <sub>cispr</sub> )                                                                                                              |
| Conducted Emissions from Wired Network<br>Ports | 150 kHz ~ 30 MHz                | ISN Cat3 : 3.48 dB<br>ISN Cat5 : 3.94 dB<br>ISN Cat6 : 4.44 dB<br>Current Probe : 1.94 dB<br>Voltage Probe : 3.02 dB<br>Coaxial : 2.48 dB | 5.0 dB ( <i>U</i> <sub>cispr</sub> ) using AAN<br>2.9 dB ( <i>U</i> <sub>cispr</sub> ) using CP<br>3.9 dB ( <i>U</i> <sub>cispr</sub> ) using CVP |
| Radiated Emissions up to 1 GHz                  | 30 MHz ~ 1 GHz                  | 3m : 5.64 dB<br>10m : 4.30 dB                                                                                                             | 6.3 dB (U <sub>cispr</sub> )                                                                                                                      |
| Radiated Emissions above 1 GHz                  | 1 GHz ~ 6 GHz<br>6 GHz ~ 18 GHz | 4.64 dB<br>4.60 dB                                                                                                                        | 5.2 dB ( <i>U</i> <sub>cispr</sub> )                                                                                                              |

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

#### 2.3 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.



### **3** General Information

#### 3.1 Description of EUT

| Product             | PCI Express PoE+ Expansion Card |
|---------------------|---------------------------------|
| Brand               | Vecow                           |
| Test Model          | PE-2004MX                       |
| Sample Status       | Engineering sample              |
| Operating Software  | N/A                             |
| Power Supply Rating | DC from System                  |
| Accessory Device    | N/A                             |
| Data Cable Supplied | N/A                             |

#### 3.2 Primary Clock Frequencies of Internal Source

The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 2.5 GHz, provided by Vecow Co., Ltd., for detailed internal source, please refer to the manufacturer's specifications.

#### 3.3 Features of EUT

The tests reported herein were performed according to the method specified by Vecow Co., Ltd., for detailed feature description, please refer to the manufacturer's specifications or user's manual. Please refer to appendix of the report if the applicant has provided additional descriptions of the EUT.

#### 3.4 Operating Modes of EUT and Determination of Worst Case Operating Mode

- 1. The EUT was pre-tested under operating and standby condition and the worst emission level was found under **operating condition**.
- The EUT consumes power from System, which designed with AC power supply of 100-240Vac, 50-60Hz. For radiated emission evaluation, 230Vac/ 50Hz & 110Vac/ 60Hz had been covered during the pre-test. The worst radiated emission data was found at 110Vac/ 60Hz and recorded in the applied test report.
- 3. Test modes are presented in the report as below.

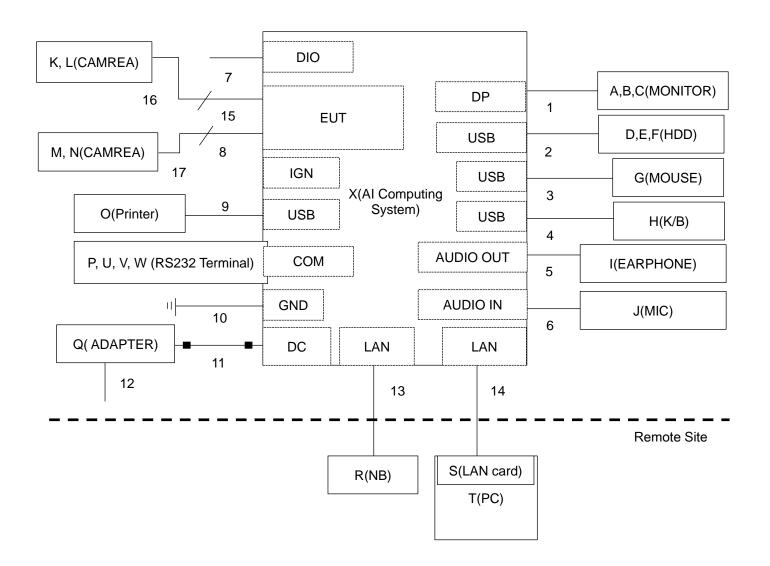
| Mode                                                                                                                                                                                                                                         | Test Condition                               | Input Power (System) |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|--|--|--|--|
|                                                                                                                                                                                                                                              | Conducted emission test                      |                      |  |  |  |  |
| А                                                                                                                                                                                                                                            |                                              | 110Vac/ 60Hz         |  |  |  |  |
| В                                                                                                                                                                                                                                            | Full System                                  | 230Vac/ 50Hz         |  |  |  |  |
| Conducted Emissions from Wired network ports test                                                                                                                                                                                            |                                              |                      |  |  |  |  |
| А                                                                                                                                                                                                                                            |                                              |                      |  |  |  |  |
| В                                                                                                                                                                                                                                            | Full System –LAN Card PoE 4 (Speed: 100Mbps) | 230Vac/ 50Hz         |  |  |  |  |
| The idle mode of conducted emission test at telecom port was pre-tested based on the worst case of link mode. Due to emissions of idle mode being very low compared to link mode, only the link mode data were presented in the test report. |                                              |                      |  |  |  |  |
| Radiated emission test                                                                                                                                                                                                                       |                                              |                      |  |  |  |  |
| A Full System 110Vac/ 60Hz                                                                                                                                                                                                                   |                                              |                      |  |  |  |  |
| Immunity tests                                                                                                                                                                                                                               |                                              |                      |  |  |  |  |
| А                                                                                                                                                                                                                                            | Full System                                  | 230Vac/ 50Hz         |  |  |  |  |



### 3.5 Test Program Used and Operation Descriptions

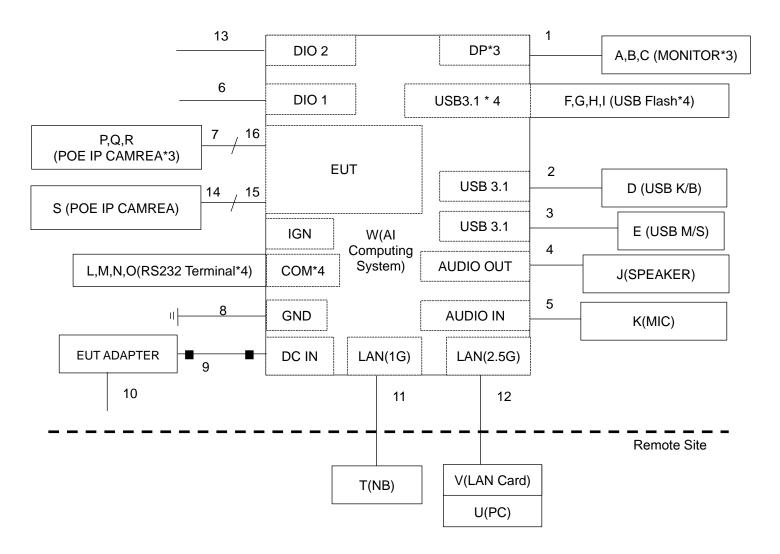
#### Emission tests:

- a. Installed the EUT into Server.
- b. Turned on the power of all equipments.
- c. Server ran a test program to enable all functions.
- d. Server read and wrote messages to/ from SSD, and ext. HDDs.
- e. IP camera captured video / audio signal to Server.
- f. Server sent and received ping messages to/ from the Notebook PCs (kept in a remote area) via two STP LAN cables (10m each).
- g. Server sent "color bars with moving element" messages to ext. LCD monitors. Then they displayed "color bars with moving element" messages on their screens simultaneously.
- h. Server sent "1kHz audio" signal to earphone.
- i. Server sent messages to printer and printed them out.
- j. Steps c-i were repeated.


#### Immunity tests:

- a. Installed the EUT into Server.
- b. Turned on the power of all equipments.
- c. Server ran a test program to enable all functions.
- d. Server read and wrote messages to/ from SSD, and USB Flash.
- e. IP camera captured video / audio signal to Server.
- f. Server sent and received ping messages to/ from the Notebook PCs (kept in a remote area) via two STP LAN cables (10m each).
- g. Server sent "color bars with moving element" messages to ext. LCD monitors. Then they displayed "color bars with moving element" messages on their screens simultaneously.
- h. Server sent audio signal to speaker.
- i. Steps c-h were repeated.




#### 3.6 Connection Diagram of EUT and Peripheral Devices

Emission tests:





Immunity tests:





## 3.7 Configuration of Peripheral Devices and Cable Connections

Emission tests:

| ID | Product                | Brand   | Model No.                 | Serial No.                   | FCC ID       | Remarks               |
|----|------------------------|---------|---------------------------|------------------------------|--------------|-----------------------|
| А  | Monitor                | ASUS    | VG289Q                    | M1LMTF385740                 | NA           | M1-010634             |
| В  | Monitor                | ASUS    | VG289Q                    | M1LMTF385742                 | NA           | M1-010635             |
| С  | Monitor                | ASUS    | VG289Q                    | M1LMTF385832                 | NA           | M1-010637             |
| D  | USB 3.1 SSD            | Crucial | CT500X8SSD9               | 1941E320114D                 | NA           | H4-010856             |
| Е  | USB 3.1 SSD            | Crucial | CT500X8SSD9               | 1943E3201B6D                 | NA           | H4-010859             |
| F  | USB 3.1 SSD            | Crucial | CT500X8SSD9               | 1940E3200CFB                 | NA           | H4-010849             |
| G  | USB Mouse              | DELL    | MOCZUL                    | CN-049TWY-<br>PRC00-77B-007E | NA           | M4-010884             |
| н  | USB Keyboard           | Dell    | KB216t                    | CN-0W33XP-<br>LO300-7CL-1909 | NA           | K1-010798             |
| Ι  | EARPHONE               | PHILIPS | SBC HL145                 | N/A                          | NA           | H2-010180             |
| J  | Microphone             | E-books | E-EPB099                  | N/A                          | NA           | M5-010144             |
| К  | IP CAMARA              | 3MP     | MBL030A-ORZ0310           | NA                           | DOC          | Supplied by applicant |
| L  | IP CAMARA              | 3MP     | MBL030A-ORZ0310           | NA                           | DOC          | Supplied by applicant |
| М  | IP CAMARA              | 3MP     | MBL030A-ORZ0310           | NA                           | DOC          | Supplied by applicant |
| Ν  | IP CAMARA              | 3MP     | MBL030A-ORZ0310           | NA                           | DOC          | Supplied by applicant |
| 0  | Printer                | HP      | HP Officejet Pro<br>251dW | NA                           | B94SDGOB1191 | Provided by Lab       |
| Ρ  | RS232 Terminal         | N/A     | NA                        | N/A                          | NA           | Supplied by applicant |
| Q  | ADAPTER                | LITEON  | PA-1331-92E               | N/A                          | NA           | Supplied by applicant |
| R  | Laptop                 | LENOVO  | T480                      | PF1EZSAW                     | NA           | N1-010484             |
| S  | 10G LAN card           | ASUS    | XG-C100C                  | NA                           | DoC          | Provided by Lab       |
| Т  | PC                     | DELL    | 3010 SF                   | 1JWQS02                      | NA           | Provided by Lab       |
| U  | RS232 Terminal         | N/A     | NA                        | N/A                          | NA           | Supplied by applicant |
| V  | RS232 Terminal         | N/A     | NA                        | N/A                          | NA           | Supplied by applicant |
| W  | RS232 Terminal         | N/A     | NA                        | N/A                          | NA           | Supplied by applicant |
| Х  | AI Computing<br>System | Vecow   | RCX-2750R-PEG             | NA                           | NA           | Supplied by applicant |

| ID | Cable Descriptions    | Qty. | Length<br>(m) | Shielding<br>(Yes/No) | Cores<br>(Qty.) | Remarks               |
|----|-----------------------|------|---------------|-----------------------|-----------------|-----------------------|
| 1  | DP cable              | 3    | 1.8           | Yes                   | 0               | Provided by Lab       |
| 2  | USB Type A to C cable | 3    | 1             | Yes                   | 0               | Provided by Lab       |
| 3  | USB 2.0 cable         | 1    | 1.8           | Yes                   | 0               | Provided by Lab       |
| 4  | USB 2.0 cable         | 1    | 1.8           | Yes                   | 0               | Provided by Lab       |
| 5  | Audio (3.5") cable    | 1    | 1.2           | No                    | 0               | Provided by Lab       |
| 6  | Audio (3.5") cable    | 1    | 2             | No                    | 0               | Provided by Lab       |
| 7  | DIO cable             | 2    | 1             | No                    | 0               | Provided by Lab       |
| 8  | RJ45 (Cat. 5e) cable  | 2    | 2             | Yes                   | 0               | Supplied by applicant |
| 9  | USB cable             | 1    | 1.5           | Yes                   | 0               | Provided by Lab       |
| 10 | GND (PE) cable        | 1    | 1.5           | No                    | 0               | Provided by Lab       |
| 11 | DC power cable        | 1    | 1             | No                    | 2               | Supplied by applicant |
| 12 | AC power cable        | 1    | 1.8           | No                    | 0               | Accessory of EUT      |
| 13 | RJ45 (Cat. 5e) cable  | 1    | 10            | Yes                   | 0               | Provided by Lab       |
| 14 | RJ45 (Cat. 5e) cable  | 1    | 10            | Yes                   | 0               | Provided by Lab       |
| 15 | RJ45 (Cat. 5e) cable  | 2    | 1             | Yes                   | 0               | Supplied by applicant |
| 16 | RJ45 (Cat. 5e) cable  | 2    | 0.1           | Yes                   | 0               | Supplied by applicant |
| 17 | RJ45 (Cat. 5e) cable  | 2    | 0.1           | Yes                   | 0               | Supplied by applicant |



Immunity tests:

| IIIIIII | iity tests.         |           |                        |                              |        |                       |
|---------|---------------------|-----------|------------------------|------------------------------|--------|-----------------------|
| ID      | Product             | Brand     | Model No.              | Serial No.                   | FCC ID | Remarks               |
| Α       | Monitor             | Vita      | VT-270JTG2             | 204270JTFE001                | DoC    | Provided by Lab       |
| В       | Monitor             | DELL      | P2415Qb                | CN-OGTTPW-<br>74261-662-OAGL | N/A    | Provided by Lab       |
| С       | Monitor             | DELL      | P2415Qb                | CN-OGTTPW-<br>74261-662-OAAL | N/A    | Provided by Lab       |
| D       | USB K/B             | Microsoft | 1576                   | N/A                          | N/A    | Provided by Lab       |
| Е       | USB M/S             | Microsoft | MSK-1113(B)            | N/A                          | N/A    | Provided by Lab       |
| F       | USB 3.0 Dongle      | HP        | x750w                  | N/A                          | N/A    | Provided by Lab       |
| G       | USB 3.0 Dongle      | HP        | x750w                  | N/A                          | N/A    | Provided by Lab       |
| Н       | USB 3.0 Dongle      | HP        | x750w                  | N/A                          | N/A    | Provided by Lab       |
| Ι       | USB 3.0 Dongle      | HP        | x750w                  | N/A                          | N/A    | Provided by Lab       |
| J       | Speaker             | N/A       | N/A                    | N/A                          | N/A    | Provided by Lab       |
| К       | Microphone          | V-COOL    | M2/MIC01               | N/A                          | N/A    | Provided by Lab       |
| L       | RS232 Terminal      | N/A       | N/A                    | N/A                          | N/A    | Supplied by applicant |
| М       | RS232 Terminal      | N/A       | N/A                    | N/A                          | N/A    | Supplied by applicant |
| Ν       | RS232 Terminal      | N/A       | N/A                    | N/A                          | N/A    | Supplied by applicant |
| 0       | RS232 Terminal      | N/A       | N/A                    | N/A                          | N/A    | Supplied by applicant |
| Р       | POE IP CAMARA       | 3MP       | MBL030A-<br>ORZ0310    | N/A                          | DOC    | Supplied by applicant |
| Q       | POE IP CAMARA       | 3MP       | MBL030A-<br>ORZ0310    | N/A                          | DOC    | Supplied by applicant |
| R       | POE IP CAMARA       | 3MP       | MBL030A-<br>ORZ0310    | N/A                          | DOC    | Supplied by applicant |
| S       | POE IP CAMARA       | 3MP       | MBL030A-<br>ORZ0310    | N/A                          | DOC    | Supplied by applicant |
| Т       | Laptop              | DELL      | P41G                   | FT4W952                      | N/A    | Provided by Lab       |
| U       | PC                  | DELL      | OptiPlex 390SF<br>Base | F3PVWBX                      | N/A    | Provided by Lab       |
| V       | 10G LAN card        | ASUS      | XG-C100C               | N/A                          | DoC    | Provided by Lab       |
| W       | AI Computing System | Vecow     | RCX-2750R-PEG          | NA                           | NA     | Supplied by applicant |



| ID | Cable Descriptions          | Qty. | Length<br>(m) | Shielding<br>(Yes/No) | Cores<br>(Qty.) | Remarks               |
|----|-----------------------------|------|---------------|-----------------------|-----------------|-----------------------|
| 1  | DP cable                    | 3    | 1.8           | Yes                   | 0               | Provided by Lab       |
| 2  | USB 2.0 cable               | 1    | 2             | Yes                   | 0               | Provided by Lab       |
| 3  | USB 2.0 cable               | 1    | 1.8           | Yes                   | 0               | Provided by Lab       |
| 4  | Audio (3.5") cable          | 1    | 1.2           | No                    | 0               | Provided by Lab       |
| 5  | Audio (3.5") cable          | 1    | 1.5           | No                    | 0               | Provided by Lab       |
| 6  | Data cable                  | 1    | 0.55          | No                    | 0               | Supplied by applicant |
| 7  | Shield RJ45 (Cat. 5e) cable | 3    | 0.3           | Yes                   | 0               | Supplied by applicant |
| 8  | GND                         | 1    | 3             | No                    | 0               | Provided by Lab       |
| 9  | DC power cable              | 1    | 1             | No                    | 2               | Accessory of EUT      |
| 10 | AC power(3pin) cable        | 1    | 1.8           | No                    | 0               | Accessory of EUT      |
| 11 | Shield RJ45 (Cat. 5e) cable | 1    | 10            | Yes                   | 0               | Provided by Lab       |
| 12 | Shield RJ45 (Cat. 5e) cable | 1    | 10            | Yes                   | 0               | Provided by Lab       |
| 13 | Data cable                  | 2    | 0.9           | No                    | 0               | Supplied by applicant |
| 14 | Shield RJ45 (Cat. 5e) cable | 1    | 0.3           | Yes                   | 0               | Supplied by applicant |
| 15 | Shield RJ45 (Cat. 5e) cable | 1    | 2             | Yes                   | 0               | Supplied by applicant |
| 16 | Shield RJ45 (Cat. 5e) cable | 1    | 1             | Yes                   | 0               | Supplied by applicant |



### 4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

#### 4.1 Conducted Emissions from Power Ports

| Description                            |               |              | Calibrated | Calibrated |
|----------------------------------------|---------------|--------------|------------|------------|
| Manufacturer                           | Model No.     | Serial No.   | Date       | Until      |
| 50 ohm terminal                        | 0000510       | E1-011285    | 2021/10/1  | 2022/9/30  |
| LYNICS                                 | 0900510       | E1-011286    | 2021/10/1  | 2022/9/30  |
| 50 Ohms Terminator<br>LYNICS           | 0900510       | E1-01-305    | 2022/2/9   | 2023/2/8   |
| Attenuator<br>STI                      | STI02-2200-10 | NO.3         | 2021/10/22 | 2022/10/21 |
| Coupling/Dcoupling Network             | CDNE-M2       | 00097        | 2022/6/1   | 2023/5/31  |
| Schwarzbeck                            | CDNE-M3       | 00091        | 2022/6/1   | 2023/5/31  |
| Coupling/Dcoupling Network<br>TESEQ    | CDN A201A     | 44601        | 2021/12/22 | 2022/12/21 |
| DC LISN                                | ESH3-Z6       | 100219       | 2022/8/2   | 2023/8/1   |
| R&S                                    | E3H3-Z0       | 844950/018   | 2022/8/2   | 2023/8/1   |
| DC LISN<br>Schwarzbeck                 | NNLK 8121     | 8121-808     | 2022/4/29  | 2023/4/28  |
| Isolation Transformer<br>Erika Fiedler | D-65396       | 017          | 2021/9/9   | 2022/9/8   |
| LISN                                   | 2025/2        | 9204-1964    | 2022/6/17  | 2023/6/16  |
| EMCO                                   | 3825/2        | 9504-2359    | 2022/8/2   | 2023/8/1   |
| LISN                                   |               | 101195       | 2022/8/1   | 2023/7/31  |
| R&S                                    | ENV216        | 101196       | 2022/5/24  | 2023/5/23  |
| NGO                                    |               | 101197       | 2022/7/5   | 2023/7/4   |
|                                        | NNLK 8121     | 8121-731     | 2022/5/26  | 2023/5/25  |
| LISN<br>Schwarzbeck                    | ININLK OIZI   | 8121-00759   | 2021/8/17  | 2022/8/16  |
| Schwarzbeck                            | NNLK8129      | 8129229      | 2022/6/8   | 2023/6/7   |
| Receiver<br>R&S                        | ESCI          | 100412       | 2021/8/26  | 2022/8/25  |
| RF Coaxial Cable<br>Commate            | 5D-FB         | Cable-CO3-01 | 2021/9/15  | 2022/9/14  |
| Software<br>BVADT                      | Cond_V7.3.7.4 | N/A          | N/A        | N/A        |

Notes:

1. The test was performed in Linkou Conduction 3.

2. Tested Date: 2022/8/11



#### 4.2 Conducted Emissions from Wired Network Ports

| Description<br>Manufacturer               | Model No.          | Serial No.   | Calibrated<br>Date | Calibrated<br>Until |
|-------------------------------------------|--------------------|--------------|--------------------|---------------------|
| Test Receiver<br>R & S                    | ESCS 30            | 838251/021   | 2021/10/13         | 2022/10/12          |
| LISN<br>R&S                               | ENV216             | 101197       | 2022/7/5           | 2023/7/4            |
| LISN<br>R&S                               | ENV216             | 101195       | 2022/8/1           | 2023/7/31           |
| LISN<br>Schwarzbeck                       | NNLK8129           | 8129229      | 2022/6/8           | 2023/6/7            |
| DC LISN<br>Schwarzbeck                    | NNLK 8121          | 8121-808     | 2022/4/29          | 2023/4/28           |
| LISN<br>Schwarzbeck                       | NNLK 8121          | 8121-731     | 2022/5/26          | 2023/5/25           |
| LISN<br>Schwarzbeck                       | NNLK 8121          | 8121-00759   | 2021/8/17          | 2022/8/16           |
| LISN<br>R&S                               | ENV216             | 101196       | 2022/5/24          | 2023/5/23           |
| LISN<br>EMCO                              | 3825/2             | 9504-2359    | 2022/8/2           | 2023/8/1            |
| LISN<br>EMCO                              | 3825/2             | 9204-1964    | 2022/6/17          | 2023/6/16           |
| Coupling/Dcoupling Network<br>Schwarzbeck | CDNE-M2            | 00097        | 2022/6/1           | 2023/5/31           |
| Coupling/Dcoupling Network<br>Schwarzbeck | CDNE-M3            | 00091        | 2022/6/1           | 2023/5/31           |
| Coupling/Dcoupling Network TESEQ          | CDN A201A          | 44601        | 2021/12/22         | 2022/12/21          |
| RF Coaxial Cable<br>Commate               | 5D-FB              | Cable-CO3-01 | 2021/9/15          | 2022/9/14           |
| 50 ohm terminal<br>LYNICS                 | 0900510            | E1-011286    | 2021/10/1          | 2022/9/30           |
| 50 ohm terminal<br>LYNICS                 | 0900510            | E1-011285    | 2021/10/1          | 2022/9/30           |
| Isolation Transformer<br>Erika Fiedler    | D-65396            | 017          | 2021/9/9           | 2022/9/8            |
| ISN<br>FCC                                | F-071115-1057-1    | 20650        | 2022/6/15          | 2023/6/14           |
| ISN<br>FCC                                | F-071115-1057-1    | 20651        | 2022/4/17          | 2023/4/16           |
| ISN<br>FCC                                | F-071115-1057-1    | 20652        | 2022/1/19          | 2023/1/18           |
| ISN<br>FCC                                | F-071115-1057-1-09 | 120033       | 2022/6/16          | 2023/6/15           |
| Impedance-stabilization-network<br>TESEQ  | ISN T8-Cat.6       | 53159        | 2022/3/22          | 2023/3/21           |
| RF Current Probe<br>FCC                   | F-33-4             | 56           | 2022/8/1           | 2023/7/31           |
| Software<br>BVADT                         | ISN_V7.3.7.4       | NA           | NA                 | NA                  |

Notes:

1. The test was performed inLinkou Conduction 3 (ISN 3).

2. Tested Date: 2022/8/11



#### Radiated Emissions up to 1 GHz 4.3

| Description<br>Manufacturer             | Model No.            | Serial No.   | Calibrated<br>Date | Calibrated<br>Until |
|-----------------------------------------|----------------------|--------------|--------------------|---------------------|
| ADT. Tower                              | AT100                | 0205         | N/A                | N/A                 |
| ADT. Turn Table                         | TT100                | 0205         | N/A                | N/A                 |
| Attenuator<br>Mini-Circuits             | UNAT-5+              | PAD-ST2-01   | 2021/10/22         | 2022/10/21          |
| Bi-log Broadband Antenna<br>Schwarzbeck | VULB9168             | 9168-303     | 2021/10/29         | 2022/10/28          |
| Coupling/Dcoupling Network              | CDNE-M2              | 00097        | 2022/6/1           | 2023/5/31           |
| Schwarzbeck                             | CDNE-M3              | 00091        | 2022/6/1           | 2023/5/31           |
| Preamplifier<br>Agilent                 | 8447D                | 2944A11062   | 2022/2/16          | 2023/2/15           |
| Pre_Amplifier<br>EMCI                   | EMC9135              | 980711       | 2022/3/19          | 2023/3/18           |
| Pre_Amplifier<br>HP                     | 8447D                | 2944A08313   | 2022/2/16          | 2023/2/15           |
| RF Coaxial Cable<br>Pacific             | 8D-FB                | Cable-ST2-01 | 2021/10/22         | 2022/10/21          |
| Software<br>BVADT                       | Radiated_V7.6.15.9.5 | N/A          | N/A                | N/A                 |
| TEST RECEIVER                           | E000.00              | 100276       | 2022/4/19          | 2023/4/18           |
| R&S                                     | ESCS 30              | 100292       | 2021/9/1           | 2022/8/31           |
| Notes:                                  |                      |              |                    |                     |

The test was performed in Linkou Open Site2 , The test site validated date: 2022/7/16 (NSA)
 Tested Date: 2022/8/12



#### 4.4 Radiated Emissions above 1 GHz

| Description<br>Manufacturer                | Model No.         | Serial No.           | Calibrated<br>Date | Calibrated<br>Until |
|--------------------------------------------|-------------------|----------------------|--------------------|---------------------|
| Attenuator                                 | BW-K3-2W44+       | PAD-CH7-03           | 2022/7/7           | 2023/7/6            |
| Mini-Circuits                              | BW-N4W5+          | PAD-CH10-02          | 2022/7/7           | 2023/7/6            |
| Band Pass Filter<br>MICRO-TRONICS          | BRM17690          | 005                  | 2022/5/26          | 2023/5/25           |
| Fix tool for Boresight antenna tower<br>BV | BAF-01            | 9                    | N/A                | N/A                 |
| Horn Antenna<br>EMCO                       | 3115              | 6714                 | 2021/11/14         | 2022/11/13          |
| Horn Antenna<br>ETS-Lindgren               | 3117-PA           | 00215857             | 2021/11/14         | 2022/11/13          |
| Horn Antenna<br>Schwarzbeck                | BBHA 9170         | 212                  | 2021/10/13         | 2022/10/12          |
| Notch Filter<br>MICRO-TRONICS              | BRC50703-01       | 010                  | 2022/5/26          | 2023/5/25           |
| Pre-amplifier<br>HP                        | 8449B             | 3008A01292           | 2022/2/17          | 2023/2/16           |
| Pre_Amplifier                              | EMC0126545        | 980076               | 2022/2/17          | 2023/2/16           |
| EMCI                                       | EMC184045B        | 980235               | 2022/2/17          | 2023/2/16           |
| RF Coaxial Cable<br>EM                     | EM102-KMKM-3.5+1M | EM102-KMKM-3.5+1M-02 | 2022/7/7           | 2023/7/6            |
| Software<br>BVADT                          | Radiated_V8.7.08  | N/A                  | N/A                | N/A                 |
| Spectrum                                   | N9020B            | MY60110438           | 2021/12/8          | 2022/12/7           |
| Keysight                                   | N9020D            | MY60112260           | 2022/5/21          | 2023/5/20           |
| Spectrum Analyzer<br>Agilent               | E4446A            | MY51100009           | 2022/6/27          | 2023/6/26           |
| Test Receiver<br>Agilent                   | N9038A            | MY51210137           | 2022/6/9           | 2023/6/8            |
| Turn Table & Tower<br>Max Full             | MF7802            | MF780208216          | N/A                | N/A                 |

Notes:

1. The test was performed in Linkou 966 Chamber 3 (CH 10).

2. Tested Date: 2022/8/13

#### 4.5 Electrostatic Discharges (ESD)

| Description<br>Manufacturer | Model No.                             | Serial No.              | Calibrated<br>Date | Calibrated<br>Until |
|-----------------------------|---------------------------------------|-------------------------|--------------------|---------------------|
| ESD Generator<br>EM Test    | Dito//DM-150/330//DM-<br>150/330-rfci | P1315117252/P1317117852 | 2022/7/7           | 2023/7/6            |

Notes:

1. The test was performed in Linkou ESD Room No.03.

2. Tested Date: 2022/8/27



#### Radio Frequency Electromagnetic Field (RS) 4.6

| Description<br>Manufacturer                             | Model No.              | Serial No.         | Calibrated<br>Date   | Calibrated<br>Until  |
|---------------------------------------------------------|------------------------|--------------------|----------------------|----------------------|
| Amplifier<br>BONN                                       | BSA 0125-800           | 1912556            | N/A                  | N/A                  |
| Amplifier<br>TESTQ                                      | CBA 1G-275             | T44344             | N/A                  | N/A                  |
| Audio analyzer<br>R&S                                   | UPV                    | 104565             | 2022/5/10            | 2023/5/9             |
| Band pass filter<br>B&K                                 | WH3278                 | N/A                | 2021/11/17           | 2022/11/16           |
| BiconiLog Antenna<br>EMCO                               | 3141                   | 1001               | N/A                  | N/A                  |
| CHANCE MOST<br>Full Anechoic<br>Chamber (9x5x3m)        | Chance Most            | RS-002             | 2022/2/3             | 2023/2/2             |
| Controller<br>AR                                        | SC1000M3               | 305910             | N/A                  | N/A                  |
| Ear Simulator Telephonometry<br>B&K                     | 4185                   | 2553594            | N/A                  | N/A                  |
| High Gain Horn Antenna<br>AR                            | AT4010                 | 0329800            | N/A                  | N/A                  |
| LOG ANTENNA<br>Schwarzbeck                              | Schwarzbeck Stlp 9149  | 9149-260           | N/A                  | N/A                  |
| Log-Periodic Antenna<br>AR                              | AT6080                 | 0329465            | N/A                  | N/A                  |
| Power Amplifier<br>AR                                   | 35S4G8AM4<br>100S1G4M3 | 0326094<br>0329249 | N/A<br>N/A           | N/A<br>N/A           |
| Power Meter<br>BOONTON                                  | 4232A                  | 94901              | 2022/6/6             | 2023/6/5             |
| Power Sensor<br>BOONTON                                 | 51011-EMC -            | 32807<br>32832     | 2022/6/6<br>2022/6/6 | 2023/6/5<br>2023/6/5 |
| Pressure-field Microphone<br>B&K                        | 4192                   | 3190854            | 2021/12/20           | 2022/12/19           |
| Signal Generator<br>Agilent                             | E8257D                 | MY48050465         | 2022/6/29            | 2023/6/28            |
| Software<br>BVADT                                       | RS_V7.6                | N/A                | N/A                  | N/A                  |
| Software                                                | ABMS_ V7.4.3           | N/A                | N/A                  | N/A                  |
| Two channel microphone<br>conditioning amplifier<br>B&K | 2690 OS2               | 3001996            | 2021/11/17           | 2022/11/16           |
| Wireless Connection Tester<br>R&S<br>Notes:             | CMW270                 | 101075             | 2022/4/18            | 2023/4/17            |

The test was performed in Linkou RS Room No.02.
 Tested Date: 2022/8/24



#### Fast Transients Common Mode (EFT) 4.7

| Description<br>Manufacturer | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
|-----------------------------|-----------|------------|--------------------|---------------------|
| Burst generator<br>Haefely  | PEFT 4010 | 154954     | 2022/3/29          | 2023/3/28           |

Notes:

- The test was performed in Linkou EFT Room.
   Tested Date: 2022/8/26

#### Radio Frequency Common Mode (CS) 4.8

| Description<br>Manufacturer                 | Model No.      | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
|---------------------------------------------|----------------|------------|--------------------|---------------------|
| Amplifier<br>AR                             | 75A250AM1      | 306331     | N/A                | N/A                 |
| Audio analyzer<br>R&S                       | UPV            | 104565     | 2022/5/10          | 2023/5/9            |
| CDN<br>FCC                                  | FCC-801-M5-50A | 100018     | 2022/1/18          | 2023/1/17           |
| CDN                                         | CDN S200       | 53490      | 2022/2/24          | 2023/2/23           |
| TESEQ                                       | CDN S400       | 52115      | 2022/2/24          | 2023/2/23           |
| CDN Calibration Kit<br>TESEQ                | CDN T8S        | 29459      | 2022/2/22          | 2023/2/21           |
| CDN M2-16Amp<br>FCC                         | FCC-801-M2-16A | 01047      | 2022/2/23          | 2023/2/22           |
|                                             | CDN M432S      | 56519      | 2022/2/23          | 2023/2/22           |
|                                             | CDN S751A      | 56435      | 2022/2/21          | 2023/2/20           |
|                                             |                | 56436      | 2022/2/22          | 2023/2/21           |
|                                             |                | 56525      | 2022/2/21          | 2023/2/20           |
|                                             | CDN ST08A      | 56527      | 2022/2/21          | 2023/2/20           |
| Coupling Decoupling Network                 | CDN T2A-10     | 54942      | 2022/2/22          | 2023/2/21           |
| TESEQ                                       | CDN T8-10      | 40376      | 2022/2/22          | 2023/2/21           |
|                                             | CDN T8-230     | 56641      | 2022/2/22          | 2023/2/21           |
|                                             |                | 56642      | 2022/2/22          | 2023/2/21           |
|                                             |                | 56643      | 2022/2/22          | 2023/2/21           |
|                                             | CDN T800       | 34428      | 2022/2/22          | 2023/2/21           |
|                                             | CDN T400A      | 49918      | 2022/2/23          | 2023/2/22           |
| Coupling/Dcoupling Network<br>EM TEST       | CDN M1/32A     | 306508     | 2022/2/23          | 2023/2/22           |
|                                             | CDN M232       | 37702      | 2022/2/23          | 2023/2/22           |
| Coupling/Dcoupling Network                  |                | 41256      | 2022/2/23          | 2023/2/22           |
| TESEQ                                       | CDN M332       | 41258      | 2022/2/23          | 2023/2/22           |
| Current Clamp<br>FCC                        | F-120-9A       | 361        | 2022/8/17          | 2023/8/16           |
| Digital Sweep Function Generator<br>Topward | 8120           | 984801     | N/A                | N/A                 |
| Ear Simulator Telephonometry<br>B&K         | 4185           | 2553594    | N/A                | N/A                 |
| FCC EM Injection Clamp<br>FCC               | F-203I-23mm    | 455        | N/A                | N/A                 |



|                                                         |              |            |                    | VERITAS             |
|---------------------------------------------------------|--------------|------------|--------------------|---------------------|
| Description<br>Manufacturer                             | Model No.    | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
| Mouth Simulator<br>B&K                                  | 4227         | 2630632    | N/A                | N/A                 |
| POWER AMPLIFIER<br>B&K                                  | 2716C        | 2610979    | N/A                | N/A                 |
| Power Meter<br>R & S                                    | NRVD         | 837794/040 | 2021/10/19         | 2022/10/18          |
| Power Sensor<br>R & S                                   | NRV-Z5       | 837878/039 | 2021/10/19         | 2022/10/18          |
| Pressure-field Microphone<br>B&K                        | 4192         | 2735407    | 2021/11/19         | 2022/11/18          |
| R&S SML03 S.G<br>R&S                                    | SML03        | 101801     | 2022/1/11          | 2023/1/10           |
| Software                                                | ABMS_ V7.4.3 | N/A        | N/A                | N/A                 |
| BVADT                                                   | CS_V7.4.2    | N/A        | N/A                | N/A                 |
| Two channel microphone<br>conditioning amplifier<br>B&K | 2690 OS2     | 3001996    | 2021/11/17         | 2022/11/16          |
| Wireless Connection Tester<br>R&S                       | CMW270       | 101075     | 2022/4/18          | 2023/4/17           |

Notes:

1. The test was performed in Linkou CS Room No.1.

2. Tested Date: 2022/8/22

#### 4.9 Power Frequency Magnetic Field (PFMF)

| Description<br>Manufacturer       | Model No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
|-----------------------------------|-----------|------------|--------------------|---------------------|
| Magnetic field generator<br>NARDA | PMM 1008  | 0100X30701 | 2022/8/23          | 2023/8/22           |
| Magnetic Field Meter<br>Combinova | MFM 10    | 224        | 2021/10/20         | 2022/10/19          |

Notes:

1. The test was performed in Linkou EMS Room No.02.

2. Tested Date: 2022/8/25



### 5 Limits of Test Items

#### 5.1 Conducted Emissions from Power Ports

For AC mains power input/output Port

|                 | Class A    | (dBµV)  | Class B (dBµV) |         |
|-----------------|------------|---------|----------------|---------|
| Frequency (MHz) | Quasi-peak | Average | Quasi-peak     | Average |
| 0.15 - 0.5      | 79         | 66      | 66 - 56        | 56 - 46 |
| 0.50 - 5.0      | 73         | 60      | 56             | 46      |
| 5.0 - 30.0      | 73         | 60      | 60             | 50      |

Notes: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

#### 5.2 Conducted Emissions from Wired Network Ports

|                                    |               |                | Clas    | ss A              | Class B |                |         |                   |         |
|------------------------------------|---------------|----------------|---------|-------------------|---------|----------------|---------|-------------------|---------|
| Frequency Coupling<br>(MHz) Device |               | e Limit<br>uV) |         | nt limits<br>5uA) | 0       | e Limit<br>uV) |         | nt limits<br>JuA) |         |
| (11112)                            | Device        | Quasi-<br>peak | Average | Quasi-<br>peak    | Average | Quasi-<br>peak | Average | Quasi-<br>peak    | Average |
| 0.15-0.5                           |               | 97-87          | 84-74   | -                 | -       | 84-74          | 74-64   | -                 | -       |
| 0.5-30                             | Using AAN     | 87             | 74      | -                 | -       | 74             | 64      | -                 | -       |
| 0.15-0.5                           | Using CVP and | 97-87          | 84-74   | 53-43             | 40-30   | 84-74          | 74-64   | 40-30             | 30-20   |
| 0.5-30                             | Current probe | 87             | 74      | 43                | 30      | 74             | 64      | 30                | 20      |
| 0.15-0.5                           | Using a 150 Ω | -              | -       | 53-43             | 40-30   | -              | -       | 40-30             | 30-20   |
| 0.5-30                             | load          | -              | -       | 43                | 30      | -              | -       | 30                | 20      |

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

#### 5.3 Radiated Emissions up to 1 GHz

| Frequency (MHz) | • • • • • | Class A<br>Quasi-peak (dBuV/m) Qua |       | Class B<br>eak (dBuV/m) |  |
|-----------------|-----------|------------------------------------|-------|-------------------------|--|
|                 | at 3m     | at 10m                             | at 3m | at 10m                  |  |
| 30 - 230        | 50        | 40                                 | 40    | 30                      |  |
| 230 - 1000      | 57        | 47                                 | 47    | 37                      |  |

Notes: 1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.



#### 5.4 Radiated Emissions above 1 GHz

|                 | Class A (dBu | uV/m) (at 3m) Class B (dB |         | uV/m) (at 3m) |  |
|-----------------|--------------|---------------------------|---------|---------------|--|
| Frequency (GHz) | Average      | Peak                      | Average | Peak          |  |
| 1 to 3          | 56           | 76                        | 50      | 70            |  |
| 3 to 6          | 60           | 80                        | 54      | 74            |  |

Notes: 1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

#### Frequency Range of Radiated Measurement (For unintentional radiators)

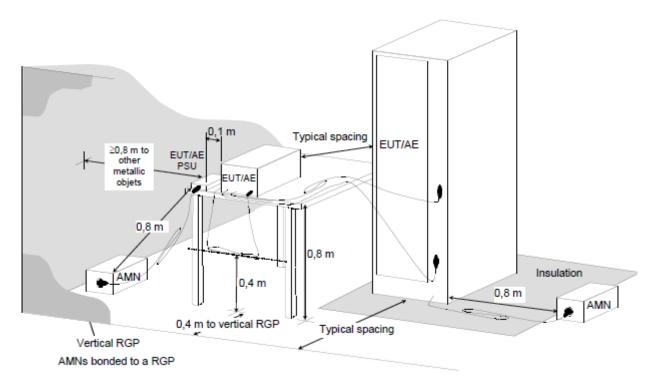
| Highest internal frequency ( <i>Fx</i> )                                                                         | Highest measurement frequency (FM)     |  |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| (MHz)                                                                                                            | (GHz)                                  |  |
| <b>F</b> x ≤ 108 MHz                                                                                             | 1                                      |  |
| 108 MHz < <i>Fx</i> ≤ 500 MHz                                                                                    | 2                                      |  |
| 500 MHz < <b>F</b> x ≤ 1 GHz                                                                                     | 5                                      |  |
| <b>F</b> x > 1 GHz                                                                                               | 5 x <i>Fx</i> up to a maximum of 6 GHz |  |
| <b>Fx</b> is the highest fundamental frequency generated and/or used in the ITE or digital apparatus under test. |                                        |  |



### 5.5 General immunity requirements

| Port                      | Basic<br>Standard                | Test item                                | Test<br>specification                                                                                                                                                                                                                                  | Performance criteria |
|---------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                           | IEC 61000-4-4                    | Fast Transients,<br>Common Mode<br>(EFT) | ±1 kV<br>5/50 ns (Tr/Th)<br>5 kHz, repetition frequency                                                                                                                                                                                                | В                    |
|                           | IEC 61000-4-5                    | Surge                                    | Line to line: ±1 kV, 1.2/50 μs<br>Line to earth: ±2 kV, 1.2/50 μs                                                                                                                                                                                      | В                    |
| input (AC)                | IEC 61000-4-6                    | Radio Frequency,<br>Common Mode (CS)     | 0.15-10 MHz, 3V, 80% AM (1kHz),<br>10-30 MHz, 3V-1V, 80% AM (1kHz),<br>30-80 MHz, 1V, 80% AM (1kHz),                                                                                                                                                   | A                    |
|                           | IEC 61000-4-11                   | Voltage dips and interruptions (DIP)     | Voltage Dips:<br>< 5 % residual voltage, 0.5 cycle<br>70% residual voltage, 25 cycles (at 50Hz)<br>Voltage Interruption:<br>< 5 % residual voltage, 250 cycles (at 50<br>Hz)                                                                           | B<br>C<br>C          |
|                           | IEC 61000-4-4                    | Fast Transients,<br>Common Mode<br>(EFT) | ±0.5 kV<br>5/50 ns (Tr/Th)<br>100 kHz, repetition frequency for xDSL port<br>5 kHz, repetition frequency for other port                                                                                                                                | В                    |
|                           |                                  | Surge                                    | Wired network ports (directly connected to<br>outdoor cables):<br>Symmetrically operated: 10/700µs<br>w/o primary protectors: ±1.0kV, or<br>with primary protectors fitted: ±1.0kV<br>and ±4.0kV,                                                      | С                    |
|                           | IEC 61000-4-5                    |                                          | Coaxial or shielded operated: 1.2/50µs shield to ground: ±0.5 kV,                                                                                                                                                                                      | В                    |
| DC<br>power/<br>Wired     |                                  |                                          | <b>DC power ports</b> (directly connected to outdoor cables): $1.2/50 \ \mu s$ each individual line to earth, or shield to ground: $\pm 0.5 \ kV$ ,                                                                                                    | В                    |
| network<br>and<br>Signal/ |                                  | Radio Frequency,<br>Common Mode (CS)     | 0.15-10 MHz, 3V, 80% AM (1kHz),<br>10-30 MHz, 3V-1V, 80% AM (1kHz),<br>30-80 MHz, 1V, 80% AM (1kHz),                                                                                                                                                   | A                    |
| Control<br>port           | noise disturbances               | Broadband impulse<br>noise disturbances  | Repetitive :<br>Impulse frequency profile :<br>0.15 – 0.5 MHz, 107 dBuV ;<br>0. 5 – 10 MHz, 107 – 36 dBuV ;<br>10 – 30 MHz, 36 – 30 dBuV<br>Burst duration : 0.70 ms<br>Burst period :10 ms(for 50 Hz)<br>At least 2 minutes for each port under test. | A                    |
|                           | (Applicable only to xDSL ports.) |                                          | Isolated :<br>Impulse frequency profile :<br>0.15 –30 MHz, 110 dBuV<br>Burst duration : 0.24 ms, 10 ms and 300<br>ms<br>Isolated impulses : 5 times<br>Interval : at least 60 seconds                                                                  | В                    |



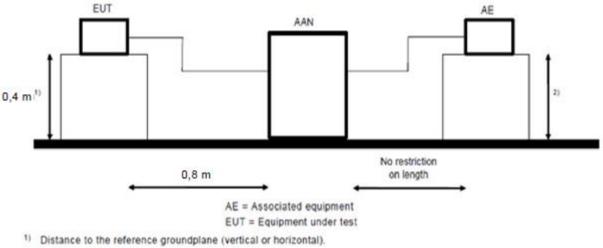

| Port      | Basic<br>Standard | Test item                                        | Test<br>specification                                                                                                                                 | Performance criteria |
|-----------|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|           | IEC 61000-4-2     | Electrostatic<br>Discharge (ESD)                 | ±4 kV (contact)<br>±8 kV (Air)                                                                                                                        | В                    |
| Enclosure | IEC 61000-4-3     | Radio Frequency<br>Electromagnetic<br>Field (RS) | Swept Frequency Test:<br>80 to 1000(MHz), 3 V/m, 80 % AM (1 kHz)<br>Spot Frequency Test:<br>1800, 2600, 3500, 5000 MHz (±1 %),<br>3V/m, 80% AM (1kHz) | A                    |
|           | IEC 61000-4-8     | Power Frequency<br>Magnetic Field<br>(PFMF)      | 1A/m, 50Hz                                                                                                                                            | A                    |



### 6 Test Arrangements

#### 6.1 Conducted Emissions from Power Ports

- a. The EUT is placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN), or an Artificial Network (AN) as specified in CISPR 25 if uses in a vehicle. Other support units are connected to the power mains through another LISN and/or AN. They provide coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

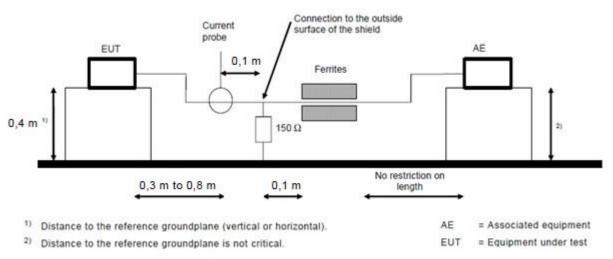





#### 6.2 Conducted Emissions from Wired Network Ports

#### Method of Using AANs:

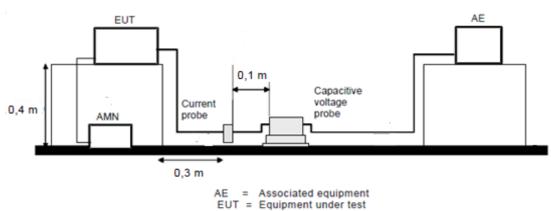
- a. The EUT is placed 0.4 meters from the conducting wall of the shielded room and connected to AAN directly to reference ground plane.
- b. If voltage measurement is used, measure voltage at the measurement port of the AAN, correct the reading by adding the AAN voltage division factor, and compare to the voltage limit.
- c. It is not necessary to apply the current limit if a AAN is used.
- d. The test results of disturbance at telecommunication ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.




2) Distance to the reference groundplane is not critical.



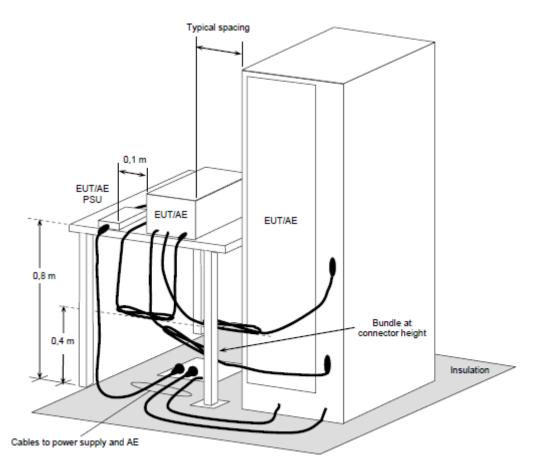
#### Method of Using a 150 $\Omega$ load to the outside surface of the shielding cable:


- a. Breaks the external protective insulation (exposing the shield) and connect a 150Ω resistor from the outside surface of the shield to ground.
- b. A current probe shall be placed at 0.1 m from the 150Ω resistor. The current probe to EUT horizontal distance is between 0.3 m to 0.8 m.
- c. If current measurement is used, measure current at the measurement port of the current probe, correct the reading by adding the current probe division factor, and compare to the current limit.
- d. It is not necessary to apply the voltage limit if a current probe is used.
- e. The test results of disturbance at telecommunication ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.





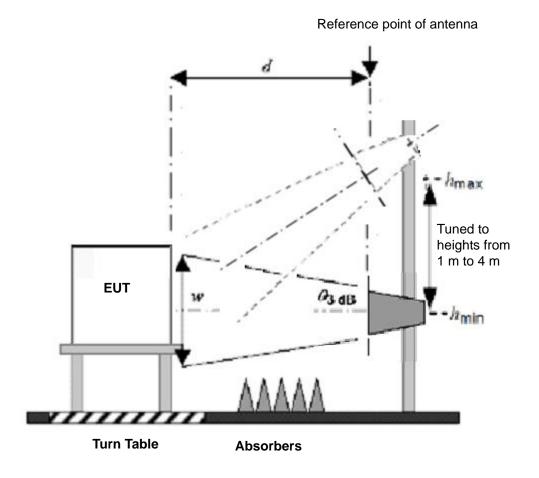
#### Method of Using a combination of current probe and capacitive voltage probe:


- a. Measure current with a current probe.
- b. Compare the measured current with the applicable current limit.
- c. Measure voltage with a capacitive voltage probe as specified in 5.2.2 of CISPR 16-1-2.
- d. Adjust the measured voltage as follows:
  - current margin  $\leq$  6 dB subtract the actual current margin from measured voltage;
  - current margin > 6 dB subtract 6 dB from measured voltage.
- e. Compare adjusted voltage with the applicable voltage limit
- f. Both the measured current and the adjusted voltage shall be below the applicable
- g. The test results of disturbance at telecommunication ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.





#### 6.3 Radiated Emissions up to 1 GHz


- a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the the floor standing EUT shall be insulated (by insulation of maximum thickness of 150 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP.
- b. The EUT is set 10 meters for 0.03 GHz to 1 GHz away from the interference-receiving antenna, which is mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT is arranged to its worst case and then the antenna is tuned to heights from 1 m to 4 m and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system is set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.
- Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for quasi-peak detection (QP) at frequency up to 1GHz.



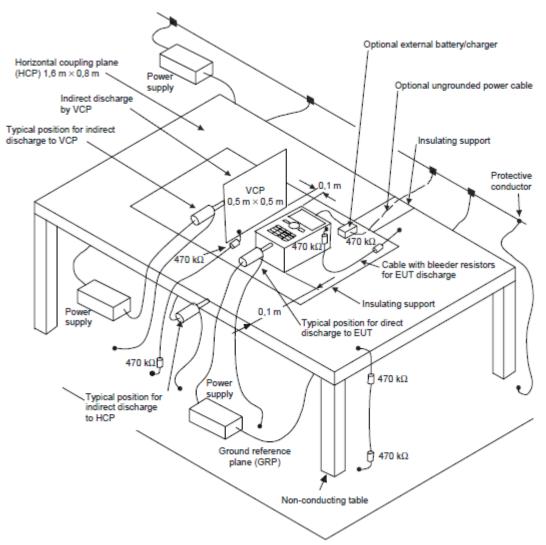


#### 6.4 Radiated Emissions above 1 GHz

- a. For the table-top EUT is placed on a 0.8 meter to the top of rotating table; for the the floor standing EUT shall be insulated (by insulation of 12 mm) from the horizontal reference ground plane. The rotating table is rotated 360 degrees to determine the position of the highest radiation. If the equipment requires a dedicated ground connection, this shall be provided and bonded to the RGP.
- b. The EUT was set d = 3 meters for 1 GHz to 5 GHz away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- Note: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection (PK) at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.






#### 6.5 Electrostatic Discharges (ESD)

| Discharge Impedance: | 330 ohm / 150 pF                                                        |  |
|----------------------|-------------------------------------------------------------------------|--|
| Number of Discharge: | ir – Direct: 10 discharges per location (each polarity)                 |  |
|                      | Contact – Direct & Indirect: 10 discharges per location (each polarity) |  |
| Discharge Period:    | 1-second minimum                                                        |  |

The basic test procedure was in accordance with EN/IEC 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.





For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

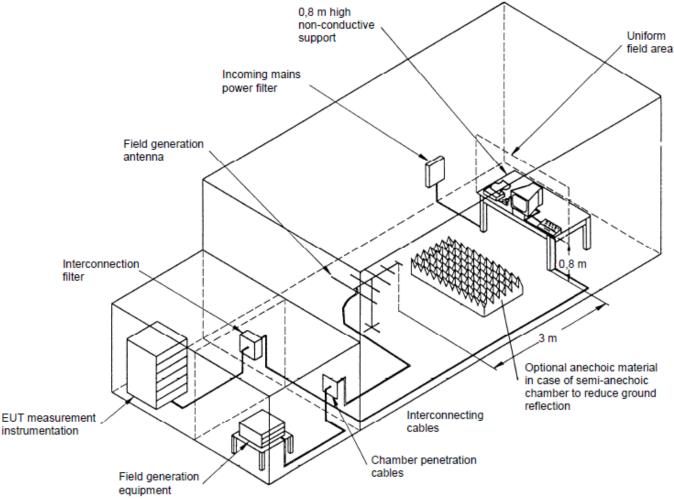
#### NOTE:

### TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The **GRP** consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal **C**oupling **P**lane (1.6m x 0.8m) was placed on the table and attached to the **GRP** by means of a cable with 940k $\Omega$  total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN/IEC 61000-4-2, and its cables were placed on the **HCP** and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

#### FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 m.




#### 6.6 Radio Frequency Electromagnetic Field (RS)

| Modulation:     | 1kHz Sine Wave, 80%, AM Modulation |
|-----------------|------------------------------------|
| Frequency Step: | 1 % of preceding frequency value   |
| Dwell Time:     | 3 seconds                          |

The test procedure was in accordance with EN/IEC 61000-4-3.

- a. The testing was performed in a modified semi-anechoic chamber.
- b. The frequency range shall be swept, with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.



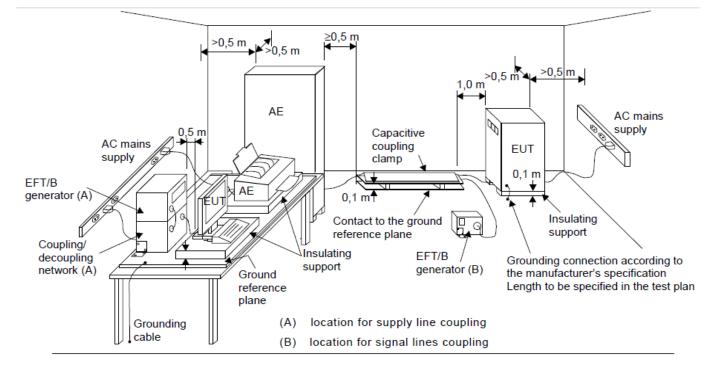
For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

#### NOTE:

#### TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of EN/IEC 61000-4-3 was placed on a nonconductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

#### FLOOR STANDING EQUIPMENT


The EUT installed in a representative system as described in section 7 of EN/IEC 61000-4-3 was placed on a nonconductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.



#### 6.7 Fast Transients Common Mode (EFT)

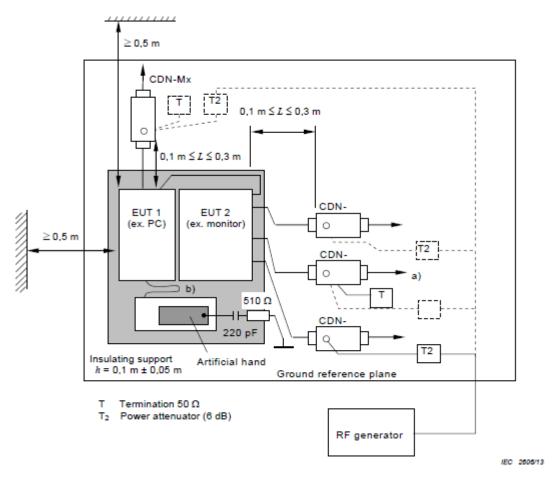
| Impulse Repetition Frequency: | xDSL telecommunication port: 100kHz<br>others: 5kHz                            |
|-------------------------------|--------------------------------------------------------------------------------|
| Impulse Wave Shape:           | 5/50 ns                                                                        |
| Burst Duration:               | 0.75 ms for 100kHz Repetition Frequency<br>15 ms for 5kHz Repetition Frequency |
| Burst Period:                 | 300 ms                                                                         |
| Test Duration:                | 1 min.                                                                         |

- a. Both positive and negative polarity discharges were applied.
- b. The distance between any coupling devices and the EUT should be 0.5 m for table-top equipment testing, and 1.0 m for floor standing equipment.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with EN/IEC 61000-4-4, 5/50 ns.



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.




#### 6.8 Radio Frequency Common Mode (CS)

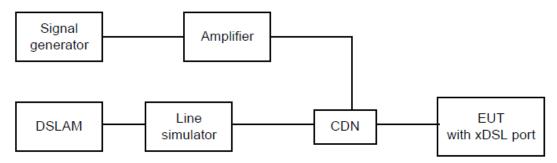
| Modulation:                                              | 1kHz Sine Wave, 80%, AM Modulation |  |
|----------------------------------------------------------|------------------------------------|--|
| Frequency Step:         1 % of preceding frequency value |                                    |  |
| Dwell Time                                               | 3 seconds                          |  |
|                                                          |                                    |  |

a. The EUT shall be tested within its intended operating and climatic conditions.

b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.

- c. One of the CDNs not used for injection was terminated with 50 ohm, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range shall be swept, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.




**Note:** 1.The EUT clearance from any metallic obstacles shall be at least 0,5 m.

2. Interconnecting cables ( $\leq 1$  m) belonging to the EUT shall remain on the insulating support. For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



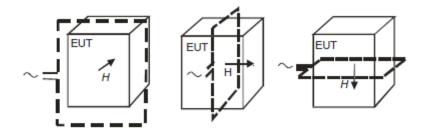
#### Broadband impulse noise disturbances, Repetitive and Isolated (Applicable only to xDSL ports.)

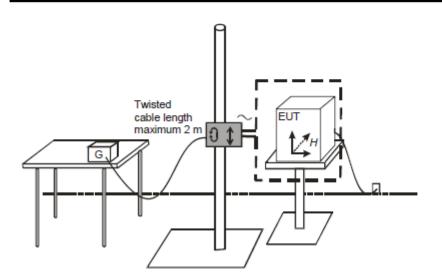
- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50 ohm, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. For the repetitive impulse test the disturbance shall be applied for a period of at least 2 minutes for each port under test.
- e. For the isolated impulse test a minimum of 5 isolated impulses shall be applied with an interval of at least 60 seconds between successive impulses.
- f. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.



# Example schematic of the broadband impulsive conducted disturbances test setup

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.





#### 6.9 Power Frequency Magnetic Field (PFMF)

| Observation Time:                                                                    | 1 minute                                                   |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Inductance Coil:                                                                     | Rectangular coil, 1 m x 1 m (L x W) or 2.6 m x 1 m (L x W) |  |  |  |
| a. The equipment is configured and connected to satisfy its functional requirements. |                                                            |  |  |  |

b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.

c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.



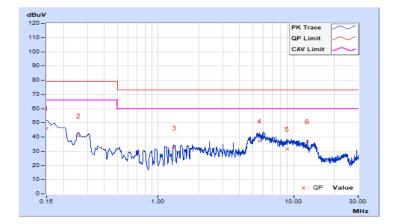


For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



# 7 Test Results of Test Item

#### 7.1 Conducted Emissions from Power Ports


#### Mode A

| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &         | Quasi-Peak (QP) /  |
|-----------------|------------------|-----------------------------|--------------------|
|                 |                  | <b>Resolution Bandwidth</b> | Average (AV), 9kHz |
| Input Power     |                  | Environmental               | 26°C 70% BH        |
| (System)        | 110 Vac, 60 Hz   | Conditions                  | 26°C, 70% RH       |
| Tested by       | Ed. Lin          |                             |                    |

|    | Phase Of Power : Line (L) |                      |                                                              |       |       |       |       |       |        |        |  |
|----|---------------------------|----------------------|--------------------------------------------------------------|-------|-------|-------|-------|-------|--------|--------|--|
| No | Frequency                 | Correction<br>Factor | Reading ValueEmission LevelLimitMargin(dBuV)(dBuV)(dBuV)(dB) |       | -     |       | 0     |       | -      |        |  |
|    | (MHz)                     | (dB)                 | Q.P.                                                         | AV.   | Q.P.  | AV.   | Q.P.  | AV.   | Q.P.   | AV.    |  |
| 1  | 0.15000                   | 9.64                 | 36.35                                                        | 13.47 | 45.99 | 23.11 | 79.00 | 66.00 | -33.01 | -42.89 |  |
| 2  | 0.25865                   | 9.65                 | 30.99                                                        | 20.82 | 40.64 | 30.47 | 79.00 | 66.00 | -38.36 | -35.53 |  |
| 3  | 1.30958                   | 9.71                 | 22.53                                                        | 10.64 | 32.24 | 20.35 | 73.00 | 60.00 | -40.76 | -39.65 |  |
| 4  | 5.63358                   | 9.81                 | 27.20                                                        | 19.16 | 37.01 | 28.97 | 73.00 | 60.00 | -35.99 | -31.03 |  |
| 5  | 8.96967                   | 9.86                 | 21.63                                                        | 11.34 | 31.49 | 21.20 | 73.00 | 60.00 | -41.51 | -38.80 |  |
| 6  | 12.57561                  | 9.90                 | 26.89                                                        | 25.73 | 36.79 | 35.63 | 73.00 | 60.00 | -36.21 | -24.37 |  |

#### Remarks:

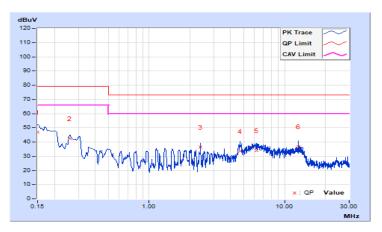
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



|                 |                  |                             |                    | 1828    |
|-----------------|------------------|-----------------------------|--------------------|---------|
|                 |                  |                             |                    | BUREAU  |
|                 |                  |                             |                    | VERITAS |
| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &         | Quasi-Peak (QP) /  |         |
| Frequency Range |                  | <b>Resolution Bandwidth</b> | Average (AV), 9kHz |         |
| Input Power     |                  | Environmental               | 26°C, 70% RH       |         |
| (System)        | 110 Vac, 60 Hz   | Conditions                  | 20 C, 70% RH       |         |
| Tested by       | Ed. Lin          |                             |                    |         |

|    | Phase Of Power : Neutral (N) |                      |       |       |       |                     |       |                |        |        |  |
|----|------------------------------|----------------------|-------|-------|-------|---------------------|-------|----------------|--------|--------|--|
| No | Frequency                    | Correction<br>Factor | 0     |       |       | vel Limit<br>(dBuV) |       | Margin<br>(dB) |        |        |  |
|    | (MHz)                        | (dB)                 | Q.P.  | AV.   | Q.P.  | AV.                 | Q.P.  | AV.            | Q.P.   | AV.    |  |
| 1  | 0.15000                      | 9.65                 | 37.34 | 13.43 | 46.99 | 23.08               | 79.00 | 66.00          | -32.01 | -42.92 |  |
| 2  | 0.25865                      | 9.65                 | 32.74 | 23.43 | 42.39 | 33.08               | 79.00 | 66.00          | -36.61 | -32.92 |  |
| 3  | 2.39110                      | 9.76                 | 26.44 | 22.88 | 36.20 | 32.64               | 73.00 | 60.00          | -36.80 | -27.36 |  |
| 4  | 4.68295                      | 9.81                 | 23.90 | 15.82 | 33.71 | 25.63               | 73.00 | 60.00          | -39.29 | -34.37 |  |
| 5  | 6.16939                      | 9.84                 | 24.11 | 17.17 | 33.95 | 27.01               | 73.00 | 60.00          | -39.05 | -32.99 |  |
| 6  | 12.57561                     | 9.96                 | 26.89 | 25.15 | 36.85 | 35.11               | 73.00 | 60.00          | -36.15 | -24.89 |  |

#### Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

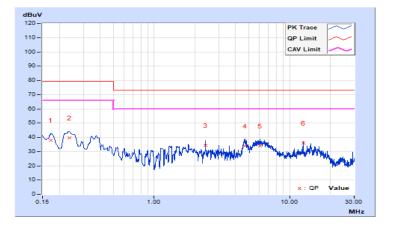
3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value






#### Mode B

| Frequency Range         | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution Bandwidth | Quasi-Peak (QP) /<br>Average (AV), 9kHz |
|-------------------------|------------------|---------------------------------------------|-----------------------------------------|
| Input Power<br>(System) | 230 Vac, 50 Hz   | Environmental<br>Conditions                 | 26°C, 70% RH                            |
| Tested by               | Ed. Lin          |                                             |                                         |

|    | Phase Of Power : Line (L) |                      |                                                                        |       |       |       |       |       |        |        |  |
|----|---------------------------|----------------------|------------------------------------------------------------------------|-------|-------|-------|-------|-------|--------|--------|--|
| No | Frequency                 | Correction<br>Factor | Reading Value Emission Level Limit Margin<br>(dBuV) (dBuV) (dBuV) (dB) |       | -     |       | 0     |       | -      |        |  |
|    | (MHz)                     | (dB)                 | Q.P.                                                                   | AV.   | Q.P.  | AV.   | Q.P.  | AV.   | Q.P.   | AV.    |  |
| 1  | 0.17283                   | 9.64                 | 28.31                                                                  | 20.53 | 37.95 | 30.17 | 79.00 | 66.00 | -41.05 | -35.83 |  |
| 2  | 0.23586                   | 9.65                 | 29.94                                                                  | 17.12 | 39.59 | 26.77 | 79.00 | 66.00 | -39.41 | -39.23 |  |
| 3  | 2.39110                   | 9.75                 | 24.43                                                                  | 22.66 | 34.18 | 32.41 | 73.00 | 60.00 | -38.82 | -27.59 |  |
| 4  | 4.68686                   | 9.80                 | 24.12                                                                  | 14.33 | 33.92 | 24.13 | 73.00 | 60.00 | -39.08 | -35.87 |  |
| 5  | 6.04424                   | 9.82                 | 23.95                                                                  | 16.62 | 33.77 | 26.44 | 73.00 | 60.00 | -39.23 | -33.56 |  |
| 6  | 12.57561                  | 9.90                 | 25.96                                                                  | 24.91 | 35.86 | 34.81 | 73.00 | 60.00 | -37.14 | -25.19 |  |

#### Remarks:

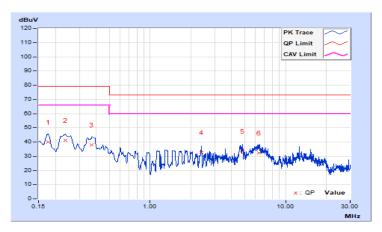
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



|                 |                  |                             |                    | BUREAU  |
|-----------------|------------------|-----------------------------|--------------------|---------|
|                 |                  |                             |                    | VERITAS |
| Frequency Range | 150 kHz ~ 30 MHz | Detector Function &         | Quasi-Peak (QP) /  |         |
| Frequency Range |                  | <b>Resolution Bandwidth</b> | Average (AV), 9kHz |         |
| Input Power     | 220 1/20 50 Hz   | Environmental               | 26°C, 70% RH       |         |
| (System)        | 230 Vac, 50 Hz   | Conditions                  | 20 C, 70% RH       |         |
| Tested by       | Ed. Lin          |                             |                    |         |

|    | Phase Of Power : Neutral (N) |                      |       |                                               |       |       |       |            |                |        |  |
|----|------------------------------|----------------------|-------|-----------------------------------------------|-------|-------|-------|------------|----------------|--------|--|
| No | Frequency                    | Correction<br>Factor |       | Reading Value Emission Level<br>(dBuV) (dBuV) |       |       |       | nit<br>uV) | Margin<br>(dB) |        |  |
|    | (MHz)                        | (dB)                 | Q.P.  | AV.                                           | Q.P.  | AV.   | Q.P.  | AV.        | Q.P.           | AV.    |  |
| 1  | 0.17605                      | 9.65                 | 30.25 | 23.98                                         | 39.90 | 33.63 | 79.00 | 66.00      | -39.10         | -32.37 |  |
| 2  | 0.23586                      | 9.65                 | 31.40 | 18.37                                         | 41.05 | 28.02 | 79.00 | 66.00      | -37.95         | -37.98 |  |
| 3  | 0.37207                      | 9.67                 | 28.35 | 13.36                                         | 38.02 | 23.03 | 79.00 | 66.00      | -40.98         | -42.97 |  |
| 4  | 2.38719                      | 9.76                 | 22.83 | 18.90                                         | 32.59 | 28.66 | 73.00 | 60.00      | -40.41         | -31.34 |  |
| 5  | 4.79245                      | 9.82                 | 23.76 | 18.45                                         | 33.58 | 28.27 | 73.00 | 60.00      | -39.42         | -31.73 |  |
| 6  | 6.33365                      | 9.85                 | 22.53 | 16.24                                         | 32.38 | 26.09 | 73.00 | 60.00      | -40.62         | -33.91 |  |

#### Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value





# 7.2 Conducted Emissions from Wired Network Ports

#### Mode A

| Frequency Range         | 150 kHz ~ 30 MHz | Detector Function &<br>Resolution Bandwidth | Quasi-Peak (QP) /<br>Average (AV), 9kHz |
|-------------------------|------------------|---------------------------------------------|-----------------------------------------|
| Input Power<br>(System) | 230 Vac, 50 Hz   | Environmental<br>Conditions                 | 25°C, 70% RH                            |
| Tested by               | Ed. Lin          |                                             |                                         |

| No | Frequency | Correction<br>Factor | Readin<br>(dB | g Value<br>uV) |       | on Level<br>uV) | Limit<br>(dBuV) |       | Margin<br>(dB) |        |
|----|-----------|----------------------|---------------|----------------|-------|-----------------|-----------------|-------|----------------|--------|
|    | (MHz)     | (dB)                 | Q.P.          | AV.            | Q.P.  | AV.             | Q.P.            | AV.   | Q.P.           | AV.    |
| 1  | 1.19616   | 9.75                 | 40.39         | 38.83          | 50.14 | 48.58           | 87.00           | 74.00 | -36.86         | -25.42 |
| 2  | 2.99339   | 9.85                 | 46.67         | 45.42          | 56.52 | 55.27           | 87.00           | 74.00 | -30.48         | -18.73 |
| 3  | 3.59178   | 9.88                 | 48.38         | 47.38          | 58.26 | 57.26           | 87.00           | 74.00 | -28.74         | -16.74 |
| 4  | 4.19016   | 9.90                 | 48.73         | 48.08          | 58.63 | 57.98           | 87.00           | 74.00 | -28.37         | -16.02 |
| 5  | 12.57561  | 10.13                | 49.41         | 48.80          | 59.54 | 58.93           | 87.00           | 74.00 | -27.46         | -15.07 |
| 6  | 20.35850  | 10.17                | 41.80         | 41.13          | 51.97 | 51.30           | 87.00           | 74.00 | -35.03         | -22.70 |

#### Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





#### Mode B

| Frequency Range         | 150 kHz ~ 30 MHz | Detector Function & Resolution Bandwidth | Quasi-Peak (QP) /<br>Average (AV), 9kHz |
|-------------------------|------------------|------------------------------------------|-----------------------------------------|
| Input Power<br>(System) | 1230 Vac 50 Hz   | Environmental<br>Conditions              | 25°C, 70% RH                            |
| Tested by               | Ed. Lin          | ·                                        |                                         |

| No | Frequency | Correction<br>Factor |       | g Value<br>suV) | Emissio<br>(dB | on Level<br>uV) | Limit<br>(dBuV) |       | Margin<br>(dB) |        |
|----|-----------|----------------------|-------|-----------------|----------------|-----------------|-----------------|-------|----------------|--------|
|    | (MHz)     | (dB)                 | Q.P.  | AV.             | Q.P.           | AV.             | Q.P.            | AV.   | Q.P.           | AV.    |
| 1  | 1.19616   | 9.75                 | 39.41 | 37.70           | 49.16          | 47.45           | 87.00           | 74.00 | -37.84         | -26.55 |
| 2  | 2.99339   | 9.85                 | 47.17 | 46.08           | 57.02          | 55.93           | 87.00           | 74.00 | -29.98         | -18.07 |
| 3  | 3.58787   | 9.88                 | 48.48 | 47.49           | 58.36          | 57.37           | 87.00           | 74.00 | -28.64         | -16.63 |
| 4  | 4.19065   | 9.90                 | 48.67 | 48.04           | 58.57          | 57.94           | 87.00           | 74.00 | -28.43         | -16.06 |
| 5  | 12.57561  | 10.13                | 48.98 | 48.85           | 59.11          | 58.98           | 87.00           | 74.00 | -27.89         | -15.02 |
| 6  | 20.35850  | 10.17                | 40.95 | 40.67           | 51.12          | 50.84           | 87.00           | 74.00 | -35.88         | -23.16 |

#### Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



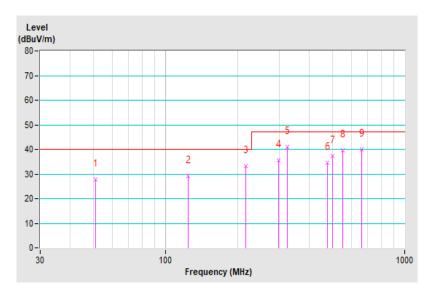


#### 7.3 Radiated Emissions up to 1 GHz

#### Mode A

| Frequency Range | 30 MH7 ~ 1 GH7 | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120 kHz |
|-----------------|----------------|------------------------------------------|--------------------------|
| Tested By       | Paul Chen      | Environmental<br>Conditions              | 33°C, 69% RH             |

|    | Antenna Polarity & Test Distance : Horizontal at 10 m |                               |                   |                |                          |                            |                        |                                |  |
|----|-------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                    | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 51.17                                                 | 27.83 QP                      | 40.00             | -12.17         | 4.00 H                   | 71                         | 36.56                  | -8.73                          |  |
| 2  | 124.91                                                | 28.99 QP                      | 40.00             | -11.01         | 4.00 H                   | 258                        | 38.70                  | -9.71                          |  |
| 3  | 216.03                                                | 33.10 QP                      | 40.00             | -6.90          | 4.00 H                   | 223                        | 43.32                  | -10.22                         |  |
| 4  | 297.12                                                | 35.46 QP                      | 47.00             | -11.54         | 3.68 H                   | 238                        | 41.65                  | -6.19                          |  |
| 5  | 324.06                                                | 40.86 QP                      | 47.00             | -6.14          | 3.31 H                   | 229                        | 46.20                  | -5.34                          |  |
| 6  | 475.07                                                | 34.46 QP                      | 47.00             | -12.54         | 2.23 H                   | 230                        | 36.84                  | -2.38                          |  |
| 7  | 500.01                                                | 37.31 QP                      | 47.00             | -9.69          | 1.86 H                   | 267                        | 39.11                  | -1.80                          |  |
| 8  | 550.02                                                | 39.52 QP                      | 47.00             | -7.48          | 1.75 H                   | 120                        | 40.23                  | -0.71                          |  |
| 9  | 662.74                                                | 39.95 QP                      | 47.00             | -7.05          | 1.33 H                   | 291                        | 37.89                  | 2.06                           |  |


#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

Pre-Amplifier Factor (dB)

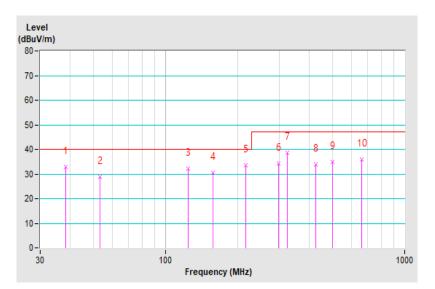
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value





| Frequency Range | 13(1)//107 - 1 (207 | Detector Function & Resolution Bandwidth | Quasi-Peak (QP), 120 kHz |
|-----------------|---------------------|------------------------------------------|--------------------------|
| Tested By       | Paul Chen           | Environmental<br>Conditions              | 33°C, 69% RH             |

|    |                    | Anten                         | na Polarity &     | Test Distan    | ce : Vertical            | at 10 m                    |                        |                                |
|----|--------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|
| No | Frequency<br>(MHz) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |
| 1  | 38.27              | 32.84 QP                      | 40.00             | -7.16          | 1.19 V                   | 247                        | 42.17                  | -9.33                          |
| 2  | 53.20              | 28.73 QP                      | 40.00             | -11.27         | 1.68 V                   | 180                        | 37.54                  | -8.81                          |
| 3  | 124.99             | 32.15 QP                      | 40.00             | -7.85          | 1.00 V                   | 55                         | 41.84                  | -9.69                          |
| 4  | 158.64             | 30.59 QP                      | 40.00             | -9.41          | 1.00 V                   | 133                        | 38.31                  | -7.72                          |
| 5  | 216.03             | 33.58 QP                      | 40.00             | -6.42          | 1.00 V                   | 184                        | 43.80                  | -10.22                         |
| 6  | 297.12             | 34.16 QP                      | 47.00             | -12.84         | 1.00 V                   | 250                        | 40.35                  | -6.19                          |
| 7  | 324.01             | 38.60 QP                      | 47.00             | -8.40          | 1.00 V                   | 133                        | 43.94                  | -5.34                          |
| 8  | 424.41             | 33.81 QP                      | 47.00             | -13.19         | 1.00 V                   | 216                        | 37.15                  | -3.34                          |
| 9  | 500.00             | 34.99 QP                      | 47.00             | -12.01         | 1.00 V                   | 118                        | 36.79                  | -1.80                          |
| 10 | 662.48             | 35.96 QP                      | 47.00             | -11.04         | 3.21 V                   | 118                        | 33.92                  | 2.04                           |


#### Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value





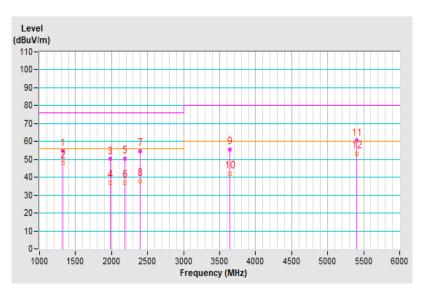
#### 7.4 Radiated Emissions above 1 GHz

#### Mode A

| Frequency Range | 1(4H7 ~ 6(4H7 | Detector Function & Resolution Bandwidth | Peak (PK) / Average (AV), 1MHz |
|-----------------|---------------|------------------------------------------|--------------------------------|
| Tested By       | Adam Chen     | Environmental<br>Conditions              | 25°C, 71% RH                   |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 1324.97                                              | 54.87 PK                      | 76.00             | -21.13         | 1.02 H                   | 153                        | 58.70                  | -3.83                          |  |
| 2  | 1324.97                                              | 47.83 AV                      | 56.00             | -8.17          | 1.02 H                   | 153                        | 51.66                  | -3.83                          |  |
| 3  | 1986.04                                              | 50.18 PK                      | 76.00             | -25.82         | 1.53 H                   | 167                        | 51.58                  | -1.40                          |  |
| 4  | 1986.04                                              | 37.05 AV                      | 56.00             | -18.95         | 1.53 H                   | 167                        | 38.45                  | -1.40                          |  |
| 5  | 2179.21                                              | 50.56 PK                      | 76.00             | -25.44         | 1.00 H                   | 199                        | 51.36                  | -0.80                          |  |
| 6  | 2179.21                                              | 36.75 AV                      | 56.00             | -19.25         | 1.00 H                   | 199                        | 37.55                  | -0.80                          |  |
| 7  | 2399.56                                              | 54.63 PK                      | 76.00             | -21.37         | 1.32 H                   | 204                        | 54.55                  | 0.08                           |  |
| 8  | 2399.56                                              | 37.78 AV                      | 56.00             | -18.22         | 1.32 H                   | 204                        | 37.70                  | 0.08                           |  |
| 9  | 3646.74                                              | 55.37 PK                      | 80.00             | -24.63         | 1.00 H                   | 4                          | 50.76                  | 4.61                           |  |
| 10 | 3646.74                                              | 41.87 AV                      | 60.00             | -18.13         | 1.00 H                   | 4                          | 37.26                  | 4.61                           |  |
| 11 | 5400.08                                              | 60.40 PK                      | 80.00             | -19.60         | 2.40 H                   | 104                        | 52.61                  | 7.79                           |  |
| 12 | 5400.08                                              | 53.30 AV                      | 60.00             | -6.70          | 2.40 H                   | 104                        | 45.51                  | 7.79                           |  |

#### **Remarks:**


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value

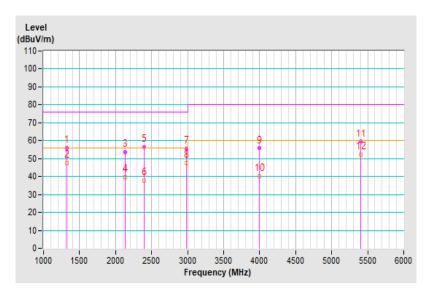




| Frequency Range |             | Detector Function & Resolution Bandwidth | Peak (PK) / Average (AV), 1MHz |
|-----------------|-------------|------------------------------------------|--------------------------------|
| Tested By       | l Adam Chen | Environmental<br>Conditions              | 25°C, 71% RH                   |

|    | Antenna Polarity & Test Distance : Vertical at 3 m |                               |                   |                |                          |                            |                        |                                |  |
|----|----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                 | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 1325.06                                            | 56.01 PK                      | 76.00             | -19.99         | 2.54 V                   | 0                          | 59.83                  | -3.82                          |  |
| 2  | 1325.06                                            | 47.63 AV                      | 56.00             | -8.37          | 2.54 V                   | 0                          | 51.45                  | -3.82                          |  |
| 3  | 2133.58                                            | 53.50 PK                      | 76.00             | -22.50         | 2.25 V                   | 190                        | 54.29                  | -0.79                          |  |
| 4  | 2133.58                                            | 39.69 AV                      | 56.00             | -16.31         | 2.25 V                   | 190                        | 40.48                  | -0.79                          |  |
| 5  | 2400.07                                            | 56.51 PK                      | 76.00             | -19.49         | 1.35 V                   | 199                        | 56.43                  | 0.08                           |  |
| 6  | 2400.07                                            | 37.70 AV                      | 56.00             | -18.30         | 1.35 V                   | 199                        | 37.62                  | 0.08                           |  |
| 7  | 2981.31                                            | 55.58 PK                      | 76.00             | -20.42         | 1.09 V                   | 360                        | 53.52                  | 2.06                           |  |
| 8  | 2981.31                                            | 47.51 AV                      | 56.00             | -8.49          | 1.09 V                   | 360                        | 45.45                  | 2.06                           |  |
| 9  | 4000.13                                            | 55.80 PK                      | 80.00             | -24.20         | 1.53 V                   | 158                        | 50.48                  | 5.32                           |  |
| 10 | 4000.13                                            | 40.09 AV                      | 60.00             | -19.91         | 1.53 V                   | 158                        | 34.77                  | 5.32                           |  |
| 11 | 5400.06                                            | 59.51 PK                      | 80.00             | -20.49         | 2.50 V                   | 112                        | 51.72                  | 7.79                           |  |
| 12 | 5400.06                                            | 52.35 AV                      | 60.00             | -7.65          | 2.50 V                   | 112                        | 44.56                  | 7.79                           |  |

#### Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

- Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value





#### 7.5 Electrostatic Discharges (ESD)

#### Mode A

#### For EN 55035

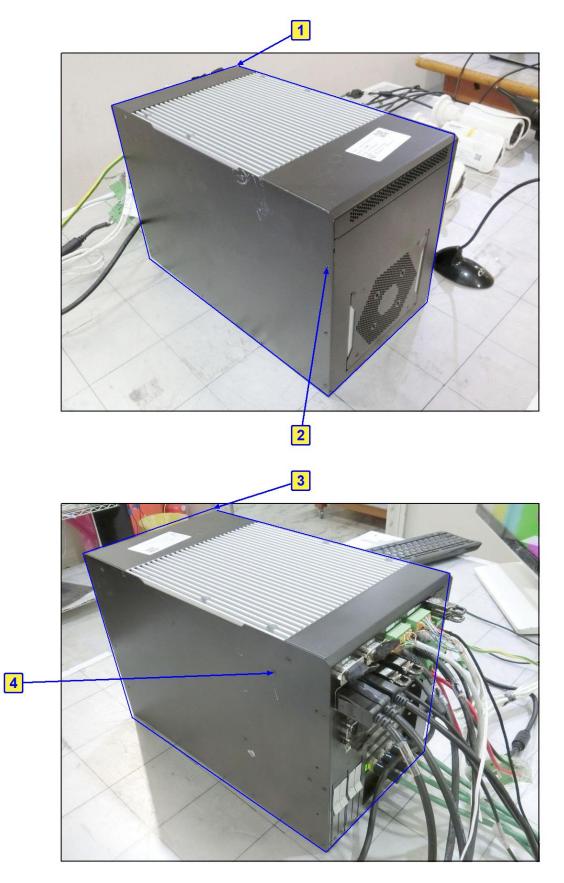
| Input Power (System) | AC 230V / 50Hz | Environmental conditions | 24 °C, 44 % RH<br>1000 mbar |
|----------------------|----------------|--------------------------|-----------------------------|
| Tested by            | Joey Liu       |                          |                             |

| Test Results of Direct Application |                   |                  |                   |               |                      |  |  |
|------------------------------------|-------------------|------------------|-------------------|---------------|----------------------|--|--|
| Discharge<br>Level (kV)            | Polarity<br>(+/-) | Test Point       | Contact Discharge | Air Discharge | Performance Criteria |  |  |
| 2                                  | +/-               | 1~6,20~26,36~40  | Note 1            |               | A                    |  |  |
| 4                                  | +/-               | 1~6,20~26,36~40  | Note 2            |               | В                    |  |  |
| 2, 4                               | +/-               | 7~19,27~35,41,42 |                   | Note 1        | A                    |  |  |
| 8                                  | +/-               | 7~8,35,41,42     |                   | Note 1        | А                    |  |  |
| 8                                  | +/-               | 9~19,27~34       |                   | Note 2        | В                    |  |  |

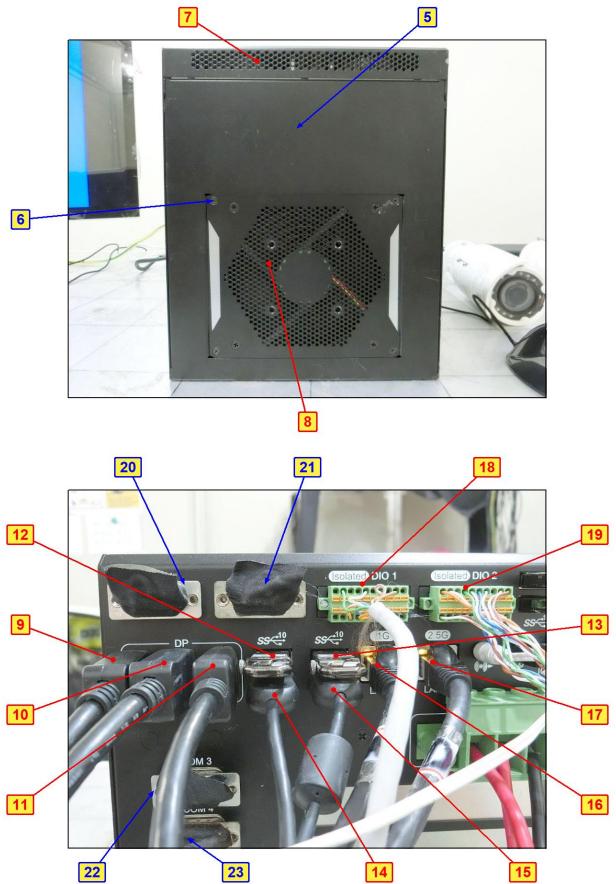
Description of test points of direct application: Please refer to following page for representative mark only.

| Test Results of Indirect Application                                                                     |     |           |        |                            |                      |  |
|----------------------------------------------------------------------------------------------------------|-----|-----------|--------|----------------------------|----------------------|--|
| Discharge<br>Level (kV)Polarity<br>(+/-)Test PointHorizontal Coupling<br>PlaneVertical Coupling<br>Plane |     |           |        | Vertical Coupling<br>Plane | Performance Criteria |  |
| 2,4                                                                                                      | +/- | Four Side | Note 1 | Note 1                     | А                    |  |

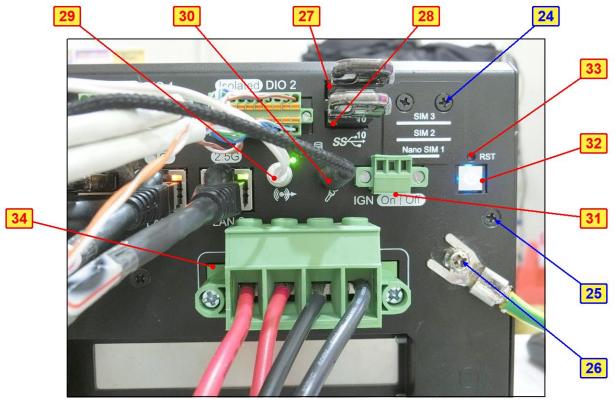
Description of test points of indirect application:

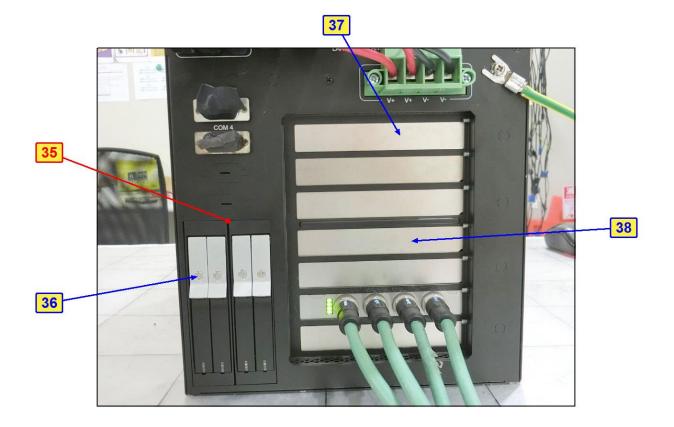

1. Front side2. Rear side3. Right side4. Left sidePlease refer to the attached page for description of test points.Notes:1. Notes:1. Notes:

1. The EUT is operated normal during the test.

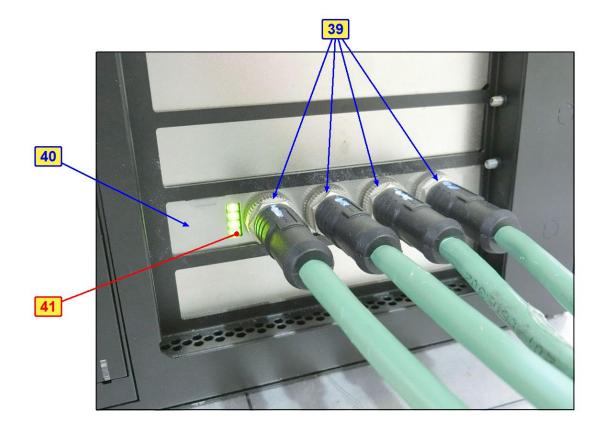

2. There are flicker on the Display screen, but auto recover after test.




# Description of test point




















## 7.6 Radio Frequency Electromagnetic Field (RS)

#### Mode A

#### For EN 55035

| Input Power (System) | AC 230V / 50Hz | Environmental conditions | 24 °C, 76 % RH<br>996 mbar |
|----------------------|----------------|--------------------------|----------------------------|
| Tested by            | Joey Liu       |                          |                            |

| Frequency                 | Polarity | Azimuth(°)      | Applied Field Strength |               | Observation | Performance |
|---------------------------|----------|-----------------|------------------------|---------------|-------------|-------------|
| (MHz)                     | Folding  | Azimum( )       | (V/m)                  | Modulation    | Observation | Criteria    |
| 80 - 1000                 | V&H      | 0, 90, 180, 270 | 3                      | 80% AM (1kHz) | Note 1      | А           |
| 1800, 2600,<br>3500, 5000 | V&H      | 0, 90, 180, 270 | 3                      | 80% AM (1kHz) | Note 1      | A           |
| 80 - 1000                 | V&H      | 0, 90, 180, 270 | 3                      | 80% AM (1kHz) | Note 2      | А           |
| 1800, 2600,<br>3500, 5000 | V&H      | 0, 90, 180, 270 | 3                      | 80% AM (1kHz) | Note 2      | A           |

Notes:

1. The EUT is operated normal during the test.

2. Audio Out Function (Speaker out) Acoustic Reference level Pass.

#### 7.7 Fast Transients Common Mode (EFT)

#### Mode A

#### For EN 55035

| Input Power (System) | AC 230V / 50Hz | Environmental conditions | 23 °C, 72 % RH<br>1000 mbar |
|----------------------|----------------|--------------------------|-----------------------------|
| Tested by            | Joey Liu       |                          |                             |

| Wired network and signal/ control port |                 |                |             |                      |  |  |  |
|----------------------------------------|-----------------|----------------|-------------|----------------------|--|--|--|
| Voltage (kV)                           | Test Point      | Polarity (+/-) | Observation | Performance Criteria |  |  |  |
| 0.5                                    | LAN CARD Port 1 | +/-            | Note        | A                    |  |  |  |
| 0.5                                    | LAN CARD Port 4 | +/-            | Note        | A                    |  |  |  |

Note: The EUT is operated normal during the test.



## 7.8 Radio Frequency Common Mode (CS)

#### Mode A

#### For EN 55035

| Input Power (System) | AC 230V / 50Hz | Environmental conditions | 23 °C, 69 % RH<br>997 mbar |
|----------------------|----------------|--------------------------|----------------------------|
| Tested by            | Joey Liu       |                          |                            |

| Wired network      | Wired network and signal/ control port |               |                 |                     |             |             |                         |
|--------------------|----------------------------------------|---------------|-----------------|---------------------|-------------|-------------|-------------------------|
| Frequency<br>(MHz) | Level<br>(V rms)                       | Modulation    | Tested Line     | Injection<br>Method | Return Path | Observation | Performance<br>Criteria |
| 0.15 – 10          | 3                                      | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 1      | A                       |
| 10 – 30            | 3~1                                    | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 1      | A                       |
| 30 - 80            | 1                                      | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 1      | А                       |
| 0.15 – 10          | 3                                      | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 1      | А                       |
| 10 – 30            | 3~1                                    | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 1      | А                       |
| 30 - 80            | 1                                      | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 1      | A                       |
| 0.15 – 10          | 3                                      | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |
| 10 – 30            | 3~1                                    | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |
| 30 - 80            | 1                                      | 80% AM (1kHz) | LAN Card Port 1 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |
| 0.15 – 10          | 3                                      | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |
| 10 – 30            | 3~1                                    | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |
| 30 - 80            | 1                                      | 80% AM (1kHz) | LAN Card Port 4 | CDN-ST08A           | CDN-M3      | Note 2      | А                       |

Notes:

1. The EUT is operated normal during the test.

2. Audio Out Function (Speaker out) Acoustic Reference level Pass.

#### 7.9 Power Frequency Magnetic Field (PFMF)

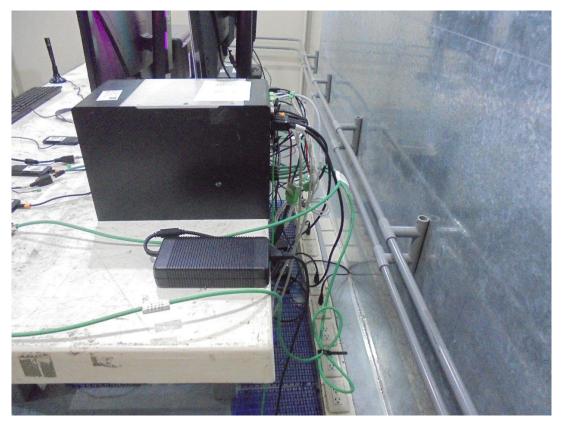
#### Mode A

#### For EN 55035

| Input Power (System) | AC 230V / 50Hz | Environmental conditions | 24 °C, 73 % RH<br>1001 mbar |
|----------------------|----------------|--------------------------|-----------------------------|
| Tested by            | Joey Liu       |                          |                             |

| Application | Frequency (Hz) | Field Strength (A/m) | Observation | Performance Criteria |
|-------------|----------------|----------------------|-------------|----------------------|
| X - Axis    | 50             | 1                    | Note        | A                    |
| Y - Axis    | 50             | 1                    | Note        | A                    |
| Z - Axis    | 50             | 1                    | Note        | A                    |

Note: The EUT is operated normal during the test.




# **Pictures of Test Arrangements**

#### 8.1 Conducted Emissions from Power Ports

#### Mode A & Mode B







#### 8.2 Conducted Emissions from Wired Network Ports





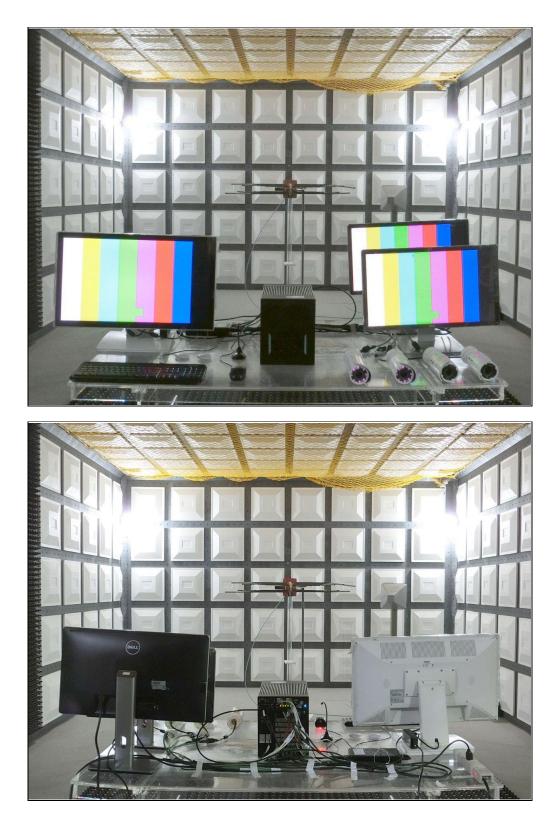
# 8.3 Radiated Emissions up to 1 GHz





#### 8.4 Radiated Emissions above 1 GHz






# 8.5 Electrostatic Discharges (ESD)



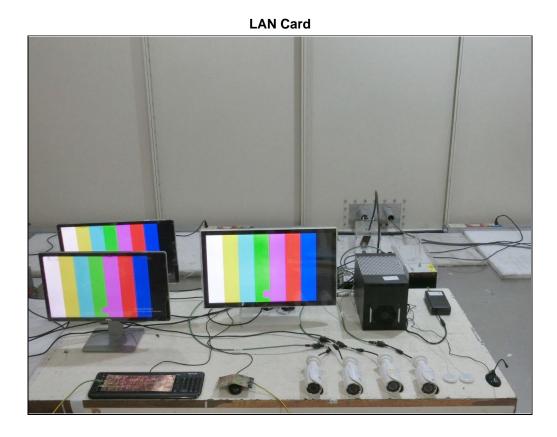


# 8.6 Radio Frequency Electromagnetic Field (RS)





# 8.7 Fast Transients Common Mode (EFT)


Mode A

<section-header>



#### 8.8 Radio Frequency Common Mode (CS)

Mode A



# 8.9 Power Frequency Magnetic Field (PFMF)





# 9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

### Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232

Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----